Rigidity-Driven Structural Isomers in the NaCl-Ga2S3 System: Implications for Energy Storage.

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2024-10-01 eCollection Date: 2025-01-01 DOI:10.1002/smsc.202400371
Maria Bokova, Mohammad Kassem, Takeshi Usuki, Andrey Tverjanovich, Anton Sokolov, Daniele Fontanari, Alex C Hannon, Chris J Benmore, Igor Alekseev, Shinji Kohara, Pascal Roussel, Maxim Khomenko, Koji Ohara, Yohei Onodera, Arnaud Cuisset, Eugene Bychkov
{"title":"Rigidity-Driven Structural Isomers in the NaCl-Ga<sub>2</sub>S<sub>3</sub> System: Implications for Energy Storage.","authors":"Maria Bokova, Mohammad Kassem, Takeshi Usuki, Andrey Tverjanovich, Anton Sokolov, Daniele Fontanari, Alex C Hannon, Chris J Benmore, Igor Alekseev, Shinji Kohara, Pascal Roussel, Maxim Khomenko, Koji Ohara, Yohei Onodera, Arnaud Cuisset, Eugene Bychkov","doi":"10.1002/smsc.202400371","DOIUrl":null,"url":null,"abstract":"<p><p>Alternative energy sources require the search for innovative materials with promising functionalities. Systems with unusual chemical properties represent an insufficiently explored domain, concealing unexpected features. Using diffraction and Raman spectroscopy over a wide temperature range, supported by first-principles simulations, a rare phenomenon is unveiled: phase-dependent chemical interactions between binary components in the NaCl-Ga<sub>2</sub>S<sub>3</sub> system. In this unique occurrence, previously intact binary crystalline species transform upon melting into mixed liquid structural isomers, forming bonds with new partners. The chemical combinatorics appears to be fully reversible for stable crystals and liquids. Despite this, rapidly frozen glasses out of thermodynamic equilibrium remain in a metastable isomeric state, offering remarkable properties, particularly a high room-temperature Na<sup>+</sup> conductivity, comparable to the best sodium halide superionic conductors and therefore encouraging for sodium solid-state batteries and energy applications. A rigidity paradigm is responsible for the observed phenomenon, as the extremely constrained Ga<sub>2</sub>S<sub>3</sub> crystal lattice does not survive viscous flow, breaking up at a short-range level. The removal of rigidity constraints and dense packing leads to a significant increase in empty space, which is the origin of high sodium diffusivity. Broadly, the rigidity-driven structural isomerism opens up an inspiring path to the discovery of atypical materials.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 1","pages":"2400371"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alternative energy sources require the search for innovative materials with promising functionalities. Systems with unusual chemical properties represent an insufficiently explored domain, concealing unexpected features. Using diffraction and Raman spectroscopy over a wide temperature range, supported by first-principles simulations, a rare phenomenon is unveiled: phase-dependent chemical interactions between binary components in the NaCl-Ga2S3 system. In this unique occurrence, previously intact binary crystalline species transform upon melting into mixed liquid structural isomers, forming bonds with new partners. The chemical combinatorics appears to be fully reversible for stable crystals and liquids. Despite this, rapidly frozen glasses out of thermodynamic equilibrium remain in a metastable isomeric state, offering remarkable properties, particularly a high room-temperature Na+ conductivity, comparable to the best sodium halide superionic conductors and therefore encouraging for sodium solid-state batteries and energy applications. A rigidity paradigm is responsible for the observed phenomenon, as the extremely constrained Ga2S3 crystal lattice does not survive viscous flow, breaking up at a short-range level. The removal of rigidity constraints and dense packing leads to a significant increase in empty space, which is the origin of high sodium diffusivity. Broadly, the rigidity-driven structural isomerism opens up an inspiring path to the discovery of atypical materials.

NaCl-Ga2S3体系中刚性驱动的结构异构体:对能量存储的影响。
替代能源需要寻找具有良好功能的创新材料。具有不寻常化学性质的系统代表了一个未充分探索的领域,隐藏了意想不到的特征。在第一原理模拟的支持下,在宽温度范围内使用衍射和拉曼光谱,揭示了一种罕见的现象:NaCl-Ga2S3体系中二元组分之间的相依赖化学相互作用。在这种独特的情况下,先前完整的二元晶体在熔化后转变为混合的液体结构异构体,与新的伙伴形成键。对于稳定的晶体和液体,化学组合似乎是完全可逆的。尽管如此,离开热力学平衡的快速冷冻玻璃仍然处于亚稳态异构状态,提供了显着的性能,特别是高室温Na+导电性,可与最好的卤化钠超离子导体相媲美,因此鼓励钠固态电池和能源应用。刚性范式是观察到的现象的原因,因为极度受限的Ga2S3晶格不能在粘性流动中生存,在短范围内破裂。刚性约束和致密堆积的消除导致空隙的显著增加,这是高钠扩散率的来源。从广义上讲,刚性驱动的结构异构为发现非典型材料开辟了一条鼓舞人心的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信