{"title":"Microbial Community Responses to Alternate Wetting and Drying in the System of Rice Intensification.","authors":"Ismaila Yakubu, Eunsol Yeon, Hyun Gi Kong","doi":"10.5423/PPJ.NT.01.2025.0001","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous flooding in rice production presents significant challenges, such as increased labor intensity and soil degradation. However, when properly implemented, alternate wetting and drying can mitigate these issues. Despite its potential advantages, the effects of different water management practices on the soil microbiome are not well understood. This study explored how intermittent flooding and drying influence the soil microbiome by analyzing microbial communities under varying moisture conditions using Illumina sequencing. The results showed notable shifts in the abundance of Bacillota and Actinomycetota in response to fluctuations in water levels, although the overall microbial abundance returned to its original state under stable moisture conditions. In contrast, the abundance of Chloroflexota, which increased during waterlogging, remained elevated even under dry conditions. Additionally, microbial interactions were more pronounced during waterlogging compared to both moist and dry conditions. Overall, this research underscores the significant role of water management in shaping soil bacterial communities.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"41 2","pages":"231-239"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986366/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5423/PPJ.NT.01.2025.0001","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous flooding in rice production presents significant challenges, such as increased labor intensity and soil degradation. However, when properly implemented, alternate wetting and drying can mitigate these issues. Despite its potential advantages, the effects of different water management practices on the soil microbiome are not well understood. This study explored how intermittent flooding and drying influence the soil microbiome by analyzing microbial communities under varying moisture conditions using Illumina sequencing. The results showed notable shifts in the abundance of Bacillota and Actinomycetota in response to fluctuations in water levels, although the overall microbial abundance returned to its original state under stable moisture conditions. In contrast, the abundance of Chloroflexota, which increased during waterlogging, remained elevated even under dry conditions. Additionally, microbial interactions were more pronounced during waterlogging compared to both moist and dry conditions. Overall, this research underscores the significant role of water management in shaping soil bacterial communities.