GAS reduced inflammatory responses in activated microglia by regulating the Ccr2/Akt/Gsk-3β pathway.

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Haolong Shi, Jinsha Shi, Zhao Wang, Hanjun Zuo, Tao Guo, Huixin Zheng, Rong Xiao, Xinglin Zhang, Shuhan Yang, Juanjuan Li
{"title":"GAS reduced inflammatory responses in activated microglia by regulating the Ccr2/Akt/Gsk-3β pathway.","authors":"Haolong Shi, Jinsha Shi, Zhao Wang, Hanjun Zuo, Tao Guo, Huixin Zheng, Rong Xiao, Xinglin Zhang, Shuhan Yang, Juanjuan Li","doi":"10.1186/s13041-025-01206-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic-ischemic brain damage (HIBD) is a significant cause of neonatal death and neurological dysfunction. Following this injury, activated microglia can lead to a series of inflammatory responses. Gastrodin (GAS), a polyphenol extracted from the Chinese herbal medicine Gastrodia elata Blume, has demonstrated antioxidant and anti-inflammatory effects. This study investigated the neuroprotective impact of GAS in HIBD mice model and in BV2 cells subjected to oxygen-glucose deprivation (OGD) treatment. Expression of various members of the Ccr2/Akt/Gsk-3β, including Ccl2, Ccr2, Akt, p-Akt, Gsk-3β, p-Gsk-3β and inflammatory factors TNF-α and IL-1β in activated microglia was assessed by Western blotting, immunofluorescence, and qRT-PCR in HIBD in postnatal mice, and in OGD-induced BV2 microglia in vitro with or without GAS treatment. The present results showed that GAS effectively reduces the expression of Ccl2 and Ccr2, increases the phosphorylation levels of Akt and Gsk-3β, and decreases the expression of the TNF-α and IL-1β. Additionally, we have shown that inhibition of Ccr2 by RS102895 increased the expression of p-Akt and p-Gsk-3β, and attenuate production of proinflammatory mediators in activated microglia. Of note, the expression of p-Akt, p-Gsk-3β, TNF-α and IL-1β remained unchanged after the combination of gastrodin and RS102895. Taken together, we conclude that GAS can play a protective role in reducing the neuroinflammatory response after HIBD. It is suggested that this is mainly through up-regulating the Akt/Gsk-3β signaling pathway via the Ccr2 receptor in the present experimental paradigm.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"40"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057146/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01206-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hypoxic-ischemic brain damage (HIBD) is a significant cause of neonatal death and neurological dysfunction. Following this injury, activated microglia can lead to a series of inflammatory responses. Gastrodin (GAS), a polyphenol extracted from the Chinese herbal medicine Gastrodia elata Blume, has demonstrated antioxidant and anti-inflammatory effects. This study investigated the neuroprotective impact of GAS in HIBD mice model and in BV2 cells subjected to oxygen-glucose deprivation (OGD) treatment. Expression of various members of the Ccr2/Akt/Gsk-3β, including Ccl2, Ccr2, Akt, p-Akt, Gsk-3β, p-Gsk-3β and inflammatory factors TNF-α and IL-1β in activated microglia was assessed by Western blotting, immunofluorescence, and qRT-PCR in HIBD in postnatal mice, and in OGD-induced BV2 microglia in vitro with or without GAS treatment. The present results showed that GAS effectively reduces the expression of Ccl2 and Ccr2, increases the phosphorylation levels of Akt and Gsk-3β, and decreases the expression of the TNF-α and IL-1β. Additionally, we have shown that inhibition of Ccr2 by RS102895 increased the expression of p-Akt and p-Gsk-3β, and attenuate production of proinflammatory mediators in activated microglia. Of note, the expression of p-Akt, p-Gsk-3β, TNF-α and IL-1β remained unchanged after the combination of gastrodin and RS102895. Taken together, we conclude that GAS can play a protective role in reducing the neuroinflammatory response after HIBD. It is suggested that this is mainly through up-regulating the Akt/Gsk-3β signaling pathway via the Ccr2 receptor in the present experimental paradigm.

GAS通过调节Ccr2/Akt/Gsk-3β通路减少激活小胶质细胞的炎症反应。
缺氧缺血性脑损伤(HIBD)是新生儿死亡和神经功能障碍的重要原因。在这种损伤之后,激活的小胶质细胞会导致一系列的炎症反应。天麻素(GAS)是一种从中草药天麻中提取的多酚,具有抗氧化和抗炎作用。本研究探讨了GAS对HIBD小鼠模型和缺氧-葡萄糖剥夺(OGD)处理的BV2细胞的神经保护作用。采用Western blotting、免疫荧光、qRT-PCR等方法,在小鼠产后HIBD和体外ogd诱导的BV2小胶质细胞中检测Ccr2/Akt/Gsk-3β中Ccl2、Ccr2、Akt、p-Akt、Gsk-3β、p-Gsk-3β和炎性因子TNF-α、IL-1β的表达情况。本研究结果表明,GAS可有效降低Ccl2和Ccr2的表达,提高Akt和Gsk-3β的磷酸化水平,降低TNF-α和IL-1β的表达。此外,我们发现RS102895对Ccr2的抑制增加了p-Akt和p-Gsk-3β的表达,并减弱了活化小胶质细胞中促炎介质的产生。值得注意的是,天麻素与RS102895联合使用后,p-Akt、p-Gsk-3β、TNF-α和IL-1β的表达没有变化。综上所述,我们得出结论,GAS可以在减少HIBD后神经炎症反应中发挥保护作用。我们认为这主要是通过Ccr2受体上调Akt/Gsk-3β信号通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信