Spatiotemporal regulation of neutrophil heterogeneity in health and disease.

IF 3.2 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jingu Lee, Bo-Ram Jin, Jaehyung Cho
{"title":"Spatiotemporal regulation of neutrophil heterogeneity in health and disease.","authors":"Jingu Lee, Bo-Ram Jin, Jaehyung Cho","doi":"10.1093/hmg/ddaf008","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils are the most abundant leukocytes in humans and are indispensable for innate immunity. They are short-lived, terminally differentiated cells. However, mounting evidence indicates that neutrophils are heterogeneous in health and disease: they are young or aged in a steady state, while their heterogeneity becomes more diverse in disease conditions, such as cancer, sepsis, and thromboinflammation. Although the presence of distinct neutrophil subsets is well recognized, it is not fully understood how neutrophils have functional and phenotypic heterogeneity and what mechanisms control it. This review will focus on our current understanding of the molecular basis for neutrophil heterogeneity in pathophysiological conditions. In addition, we will discuss the possibility of targeting a specific subset of neutrophils to attenuate inflammation and tissue damage without compromising innate immune responses.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"R11-R22"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501967/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neutrophils are the most abundant leukocytes in humans and are indispensable for innate immunity. They are short-lived, terminally differentiated cells. However, mounting evidence indicates that neutrophils are heterogeneous in health and disease: they are young or aged in a steady state, while their heterogeneity becomes more diverse in disease conditions, such as cancer, sepsis, and thromboinflammation. Although the presence of distinct neutrophil subsets is well recognized, it is not fully understood how neutrophils have functional and phenotypic heterogeneity and what mechanisms control it. This review will focus on our current understanding of the molecular basis for neutrophil heterogeneity in pathophysiological conditions. In addition, we will discuss the possibility of targeting a specific subset of neutrophils to attenuate inflammation and tissue damage without compromising innate immune responses.

中性粒细胞异质性在健康和疾病中的时空调节。
中性粒细胞是人体内最丰富的白细胞,对先天免疫是不可或缺的。它们是短命的、终末分化的细胞。然而,越来越多的证据表明,中性粒细胞在健康和疾病中是异质性的:它们在稳定状态下是年轻的或年老的,而它们的异质性在疾病条件下变得更加多样化,如癌症、败血症和血栓炎症。虽然不同的中性粒细胞亚群的存在是公认的,但中性粒细胞如何具有功能和表型异质性以及控制它的机制尚不完全清楚。这篇综述将集中在我们目前对病理生理条件下中性粒细胞异质性的分子基础的理解。此外,我们将讨论针对特定的中性粒细胞亚群来减轻炎症和组织损伤而不影响先天免疫反应的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信