Host-parasite interactions after in vitro infection of human macrophages by Leishmania major: Dual analysis of microRNA and mRNA profiles reveals regulation of key processes through time kinetics.
{"title":"Host-parasite interactions after in vitro infection of human macrophages by Leishmania major: Dual analysis of microRNA and mRNA profiles reveals regulation of key processes through time kinetics.","authors":"Chiraz Atri, Ghada Mkannez, Hanène Attia, Rabiaa Manel Sghaier, Aymen Bali, Ali Ben-Cheikh, Imen Rabhi, Béatrice Regnault, David Piquemal, Kais Ghedira, Koussay Dellagi, Dhafer Laouini, Fatma Zahra Guerfali","doi":"10.1016/j.micinf.2025.105502","DOIUrl":null,"url":null,"abstract":"<p><p>Micro-RNAs are a class of small non-coding ribonucleic acids that concomitantly regulate the expression of tens to hundreds of genes. To reduce the host's defense, Leishmania parasites hijack the cellular functions of their macrophage's targets through gene expression regulation. Only few studies have attempted to correlate miRNAs and mRNAs expressions within the same samples in the context of cellular parasitism. In this study, the profiling of human macrophages, in vitro infected by L. major parasites, was performed at both the mRNA transcriptomic level and the expression of a set of 365 miRNAs, and we correlated their expressions in search for a common molecular signature. Both mRNA and miRNA profiles were monitored during the first 24 h post-infection to capture potential time-dependent fluctuations. We then cross-correlated the cellular biological processes and the pathways associated to the predicted targets of miRNAs and to the differentially expressed mRNAs at all time points of infection on the same samples. Besides revealing the classical activation of immune signaling pathways, the mRNA-micro-RNAs correlation study highlighted other common regulatory inflammatory biological processes, allowing identification of rapidly modulated pathways, and bringing further evidence on the early molecular cross talk that take place between Leishmania and infected cells.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":" ","pages":"105502"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micinf.2025.105502","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Micro-RNAs are a class of small non-coding ribonucleic acids that concomitantly regulate the expression of tens to hundreds of genes. To reduce the host's defense, Leishmania parasites hijack the cellular functions of their macrophage's targets through gene expression regulation. Only few studies have attempted to correlate miRNAs and mRNAs expressions within the same samples in the context of cellular parasitism. In this study, the profiling of human macrophages, in vitro infected by L. major parasites, was performed at both the mRNA transcriptomic level and the expression of a set of 365 miRNAs, and we correlated their expressions in search for a common molecular signature. Both mRNA and miRNA profiles were monitored during the first 24 h post-infection to capture potential time-dependent fluctuations. We then cross-correlated the cellular biological processes and the pathways associated to the predicted targets of miRNAs and to the differentially expressed mRNAs at all time points of infection on the same samples. Besides revealing the classical activation of immune signaling pathways, the mRNA-micro-RNAs correlation study highlighted other common regulatory inflammatory biological processes, allowing identification of rapidly modulated pathways, and bringing further evidence on the early molecular cross talk that take place between Leishmania and infected cells.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.