Andreea Petra Ungur, Andreea-Iulia Socaciu, Maria Barsan, Armand Gabriel Rajnoveanu, Razvan Ionut, Carmen Socaciu, Lucia Maria Procopciuc
{"title":"Urine Metabolomic Patterns to Discriminate the Burnout Levels and Night-Shift-Related Stress in Healthcare Professionals.","authors":"Andreea Petra Ungur, Andreea-Iulia Socaciu, Maria Barsan, Armand Gabriel Rajnoveanu, Razvan Ionut, Carmen Socaciu, Lucia Maria Procopciuc","doi":"10.3390/metabo15040273","DOIUrl":null,"url":null,"abstract":"<p><p>Burnout syndrome, which significantly impacts both individual and societal quality of life, is primarily characterized by three key criteria: depersonalization, emotional exhaustion, and low personal accomplishment, all linked to work-related stress. <b>Purpose</b>: Comparative evaluation of urine metabolite patterns that may discriminate the burnout levels and the effects of night shifts on healthcare professionals. The Maslach Burnout Inventory survey was administered to 64 physicians and nurses working day and night shifts, with scores for each criterion recorded. <b>Methods</b>: Urine samples were collected, and metabolomic patterns were analyzed using UHPLC-QTOF-ESI+-MS technology. This analysis employed both untargeted and semi-targeted metabolomics, coupled with multivariate and ANOVA statistics, utilizing the online Metaboanalyst 6.0 platform. Partial Least Squares Discriminant Analysis (PLSDA) was performed, along with VIP values, Random Forest graphs, and heatmaps based on 79 identified metabolites. These were further complemented by biomarker analysis (AUC ranking) and pathway analysis of metabolic networks. <b>Results</b>: The findings highlighted the biochemical effects of night shifts and their correlation with burnout scores from each dimension. <b>Conclusions</b>: This study demonstrated the involvement of three major metabolic pathways in diagnosing burnout: lipid metabolism, particularly related to steroid hormones (cortisol, cortisone, and androsterone metabolites); energetic metabolism, involving long-chain acylated carnitines as transporters of free fatty acids, which play a role in burnout control; and a third pathway affecting catecholamine metabolism (neurotransmitters derived from tyrosine, such as dopamine, adrenaline, and noradrenaline), as well as tryptophan metabolism (serotonin and melatonin metabolites) and amino acid metabolism (including aspartate, arginine, and valine).</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15040273","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Burnout syndrome, which significantly impacts both individual and societal quality of life, is primarily characterized by three key criteria: depersonalization, emotional exhaustion, and low personal accomplishment, all linked to work-related stress. Purpose: Comparative evaluation of urine metabolite patterns that may discriminate the burnout levels and the effects of night shifts on healthcare professionals. The Maslach Burnout Inventory survey was administered to 64 physicians and nurses working day and night shifts, with scores for each criterion recorded. Methods: Urine samples were collected, and metabolomic patterns were analyzed using UHPLC-QTOF-ESI+-MS technology. This analysis employed both untargeted and semi-targeted metabolomics, coupled with multivariate and ANOVA statistics, utilizing the online Metaboanalyst 6.0 platform. Partial Least Squares Discriminant Analysis (PLSDA) was performed, along with VIP values, Random Forest graphs, and heatmaps based on 79 identified metabolites. These were further complemented by biomarker analysis (AUC ranking) and pathway analysis of metabolic networks. Results: The findings highlighted the biochemical effects of night shifts and their correlation with burnout scores from each dimension. Conclusions: This study demonstrated the involvement of three major metabolic pathways in diagnosing burnout: lipid metabolism, particularly related to steroid hormones (cortisol, cortisone, and androsterone metabolites); energetic metabolism, involving long-chain acylated carnitines as transporters of free fatty acids, which play a role in burnout control; and a third pathway affecting catecholamine metabolism (neurotransmitters derived from tyrosine, such as dopamine, adrenaline, and noradrenaline), as well as tryptophan metabolism (serotonin and melatonin metabolites) and amino acid metabolism (including aspartate, arginine, and valine).
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.