{"title":"Ferrocene-derived magnetic fiber-particles from diesel exhaust: enhanced pulmonary toxicity via Bach1-SAT1-polyamine depletion.","authors":"Xinxian Gong, Siyi Wang, Junhua Yuan, Jing Ji, Rui Zhao, Jing Huang, Boyang Li, Yunuo Zhai, Yuxu Zhong, Yuxin Zheng, Qixiao Jiang","doi":"10.1186/s12951-025-03397-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>Magnetic nanoparticles are key components of air pollution. The combustion of diesel engine fuels, especially with ferrocene doping to reduce emissions, may increase exposure to these particles and related health risks. This study aimed to reveal the generation and characterization of ferrocene-derived magnetic particles (FMP) in ferrocene-doped diesel exhaust, and to investigate its toxicities and associated mechanisms in an avian model.</p><p><strong>Methods: </strong>FMP was observed in ferrocene-doped diesel exhaust particles, and extracted with neodymium magnets. Extracted FMP was characterized, and exposed to hatchling chickens via aerosol inhalation. Pulmonary toxicities were assessed with pathological and molecular methods. Associated mechanisms were investigated with RNA-seq, in vitro cell culture, and in vivo gene silencing.</p><p><strong>Results: </strong>FMP was characterized to be fibrous, magnetic iron-containing carbon particles. Extracted FMP could directly induce pulmonary toxicity. Mechanistic investigations revealed molecular mechanism associated with ferroptosis via Bach1, SAT1 and polyamines depletion, and further confirmed with ferroptosis inhibitor treatment, Bach1 inhibitor treatment, supplementation of polyamines or SAT1 silencing.</p><p><strong>Conclusions: </strong>Ferrocene doping could result in formation of magnetic particles in diesel exhaust. For the first time, magnetic fiber-like particles were extracted from ferrocene-doped DE particles, which is a potential source of magnetic particles in air pollution. To better balance emission control and health effects, further investigations are necessary.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"324"},"PeriodicalIF":10.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03397-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aim: Magnetic nanoparticles are key components of air pollution. The combustion of diesel engine fuels, especially with ferrocene doping to reduce emissions, may increase exposure to these particles and related health risks. This study aimed to reveal the generation and characterization of ferrocene-derived magnetic particles (FMP) in ferrocene-doped diesel exhaust, and to investigate its toxicities and associated mechanisms in an avian model.
Methods: FMP was observed in ferrocene-doped diesel exhaust particles, and extracted with neodymium magnets. Extracted FMP was characterized, and exposed to hatchling chickens via aerosol inhalation. Pulmonary toxicities were assessed with pathological and molecular methods. Associated mechanisms were investigated with RNA-seq, in vitro cell culture, and in vivo gene silencing.
Results: FMP was characterized to be fibrous, magnetic iron-containing carbon particles. Extracted FMP could directly induce pulmonary toxicity. Mechanistic investigations revealed molecular mechanism associated with ferroptosis via Bach1, SAT1 and polyamines depletion, and further confirmed with ferroptosis inhibitor treatment, Bach1 inhibitor treatment, supplementation of polyamines or SAT1 silencing.
Conclusions: Ferrocene doping could result in formation of magnetic particles in diesel exhaust. For the first time, magnetic fiber-like particles were extracted from ferrocene-doped DE particles, which is a potential source of magnetic particles in air pollution. To better balance emission control and health effects, further investigations are necessary.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.