{"title":"Comprehensive analysis of prognosis markers with molecular features derived from pan-cancer whole-genome sequences.","authors":"Mamoru Kato, Jo Nishino, Momoko Nagai, Hirofumi Rokutan, Daichi Narushima, Hanako Ono, Takanori Hasegawa, Seiya Imoto, Shigeyuki Matsui, Tatsuhiko Tsunoda, Tatsuhiro Shibata","doi":"10.1186/s40246-025-00744-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer prognosis markers are useful for treatment decisions; however, the omics-level landscape is not well understood across multiple cancer types. Pan-Cancer Analysis of Whole Genomes (PCAWG) provides unprecedented access to various types of molecular data, ranging from typical DNA mutations and RNA expressions to more deeply analyzed or whole-genomic features, such as HLA haplotypes and structural variations. We analyzed the PCAWG data of 13 cancer types from 1,514 patients to identify prognosis markers belonging to 17 molecular features in the survival analysis based on the Cox and Lasso regression methods. We found that germline features including HLA haplotypes, neoantigens, and the number of structural variations were associated with overall survival; however, mutational signatures were not. Measuring a few markers provided a sufficient prognostic performance evaluated by c-index for each cancer type. DNA markers demonstrated better or comparable prognostic performance compared to RNA markers in some cancer types. \"Universal\" markers strongly associated with overall survival across cancer types were not identified. These findings will give insights into the clinical implementation of prognosis markers.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"19 1","pages":"39"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993945/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-025-00744-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer prognosis markers are useful for treatment decisions; however, the omics-level landscape is not well understood across multiple cancer types. Pan-Cancer Analysis of Whole Genomes (PCAWG) provides unprecedented access to various types of molecular data, ranging from typical DNA mutations and RNA expressions to more deeply analyzed or whole-genomic features, such as HLA haplotypes and structural variations. We analyzed the PCAWG data of 13 cancer types from 1,514 patients to identify prognosis markers belonging to 17 molecular features in the survival analysis based on the Cox and Lasso regression methods. We found that germline features including HLA haplotypes, neoantigens, and the number of structural variations were associated with overall survival; however, mutational signatures were not. Measuring a few markers provided a sufficient prognostic performance evaluated by c-index for each cancer type. DNA markers demonstrated better or comparable prognostic performance compared to RNA markers in some cancer types. "Universal" markers strongly associated with overall survival across cancer types were not identified. These findings will give insights into the clinical implementation of prognosis markers.
期刊介绍:
Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics.
Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.