Brenda Mendoza-Almanza, María de la Luz Guerrero-González, Marcos Loredo-Tovias, María Elena García-Arreola, Catarina Loredo-Osti, Erika Padilla-Ortega, Pablo Delgado-Sánchez
{"title":"<i>AsNAC</i> Genes: Response to High Mercury Concentrations in <i>Allium sativum</i> Seed Clove.","authors":"Brenda Mendoza-Almanza, María de la Luz Guerrero-González, Marcos Loredo-Tovias, María Elena García-Arreola, Catarina Loredo-Osti, Erika Padilla-Ortega, Pablo Delgado-Sánchez","doi":"10.3390/biotech14020027","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal contamination in soils is a growing concern due to anthropogenic activities, and <i>Allium sativum</i> (garlic) has shown tolerance to mercury pollution. We analyzed the physiological and molecular responses of garlic cloves exposed to HgCl<sub>2</sub> at 0, 5000, 23,000, and 46,000 mg/kg for 2, 3, and 4 h. The germination percentage was lower than 46,000 mg/kg Hg for 4 h. We also analyzed the expression levels of <i>NAC</i> transcription factors and found that <i>AsNAC11</i> had higher expression at 46,000 mg/kg at 2 h; <i>AsNAC17</i> was underexpressed and the maximum was at 2 h at 23,000 mg/kg. <i>AsNAC20</i> had the highest expression (30 times more than the control) at 3 and 4 h with 23,000 mg/Kg. <i>AsNAC27</i> showed the highest expression at 3 h with 23,000 mg/kg. The tissues exhibited a maximum Hg bioconcentration factor of 0.037 at 23,000 mg/kg, indicating moderate mercury absorption. However, at a concentration of 46,000 mg/kg, the BCF decreased to 0.023. Our in-silico analysis revealed that the analyzed <i>AsNACs</i> are associated with various abiotic stress responses. This study provides valuable insights into genes that could be utilized for genetic improvement to enhance crop resistance to mercury soil contamination.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"14 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech14020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal contamination in soils is a growing concern due to anthropogenic activities, and Allium sativum (garlic) has shown tolerance to mercury pollution. We analyzed the physiological and molecular responses of garlic cloves exposed to HgCl2 at 0, 5000, 23,000, and 46,000 mg/kg for 2, 3, and 4 h. The germination percentage was lower than 46,000 mg/kg Hg for 4 h. We also analyzed the expression levels of NAC transcription factors and found that AsNAC11 had higher expression at 46,000 mg/kg at 2 h; AsNAC17 was underexpressed and the maximum was at 2 h at 23,000 mg/kg. AsNAC20 had the highest expression (30 times more than the control) at 3 and 4 h with 23,000 mg/Kg. AsNAC27 showed the highest expression at 3 h with 23,000 mg/kg. The tissues exhibited a maximum Hg bioconcentration factor of 0.037 at 23,000 mg/kg, indicating moderate mercury absorption. However, at a concentration of 46,000 mg/kg, the BCF decreased to 0.023. Our in-silico analysis revealed that the analyzed AsNACs are associated with various abiotic stress responses. This study provides valuable insights into genes that could be utilized for genetic improvement to enhance crop resistance to mercury soil contamination.