Bayesian networks for network inference in biology.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-05-01 Epub Date: 2025-05-07 DOI:10.1098/rsif.2024.0893
James Hammond, V Anne Smith
{"title":"Bayesian networks for network inference in biology.","authors":"James Hammond, V Anne Smith","doi":"10.1098/rsif.2024.0893","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian networks (BNs) have been used for reconstructing interactions from biological data, in disciplines ranging from molecular biology to ecology and neuroscience. BNs learn conditional dependencies between variables, which best 'explain' the data, represented as a directed graph which approximates the relationships between variables. In the 2000s, BNs were a popular method that promised an approach capable of inferring biological networks from data. Here, we review the use of BNs applied to biological data over the past two decades and evaluate their efficacy. We find that BNs are successful in inferring biological networks, frequently identifying novel interactions or network components missed by previous analyses. We suggest that as false positive results are underreported, it is difficult to assess the accuracy of BNs in inferring biological networks. BN learning appears most successful for small numbers of variables with high-quality datasets that either discretize the data into few states or include perturbative data. We suggest that BNs have failed to live up to the promise of the 2000s but that this is most likely due to experimental constraints on datasets, and the success of BNs at inferring networks in a variety of biological contexts suggests they are a powerful tool for biologists.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 226","pages":"20240893"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0893","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian networks (BNs) have been used for reconstructing interactions from biological data, in disciplines ranging from molecular biology to ecology and neuroscience. BNs learn conditional dependencies between variables, which best 'explain' the data, represented as a directed graph which approximates the relationships between variables. In the 2000s, BNs were a popular method that promised an approach capable of inferring biological networks from data. Here, we review the use of BNs applied to biological data over the past two decades and evaluate their efficacy. We find that BNs are successful in inferring biological networks, frequently identifying novel interactions or network components missed by previous analyses. We suggest that as false positive results are underreported, it is difficult to assess the accuracy of BNs in inferring biological networks. BN learning appears most successful for small numbers of variables with high-quality datasets that either discretize the data into few states or include perturbative data. We suggest that BNs have failed to live up to the promise of the 2000s but that this is most likely due to experimental constraints on datasets, and the success of BNs at inferring networks in a variety of biological contexts suggests they are a powerful tool for biologists.

生物学中网络推理的贝叶斯网络。
贝叶斯网络(BNs)已被用于从生物数据中重建相互作用,从分子生物学到生态学和神经科学等学科。bp学习变量之间的条件依赖关系,这最好地“解释”数据,表示为近似变量之间关系的有向图。在21世纪初,生物神经网络是一种流行的方法,它有望从数据中推断出生物网络。在此,我们回顾了过去二十年来生物生物学数据的应用,并评估了它们的功效。我们发现神经网络在推断生物网络方面是成功的,经常识别出以前分析中遗漏的新的相互作用或网络组件。我们认为,由于假阳性结果被低估,很难评估生物神经网络在推断生物网络中的准确性。BN学习对于具有高质量数据集的少量变量最成功,这些数据集要么将数据离散为几个状态,要么包含扰动数据。我们认为,神经网络未能实现2000年代的承诺,但这很可能是由于数据集的实验限制,而神经网络在各种生物学背景下推断网络的成功表明,它们是生物学家的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信