Highly Selective Methanol Synthesis Using Electrochemical CO2 Reduction with Defect-Engineered Cu58 Nanoclusters.

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2024-11-28 eCollection Date: 2025-02-01 DOI:10.1002/smsc.202400465
Sourav Biswas, Tomoya Tanaka, Haohong Song, Masaki Ogami, Yamato Shingyouchi, Sakiat Hossian, Maho Kamiyama, Taiga Kosaka, Riki Nakatani, Yoshiki Niihori, Saikat Das, Tokuhisa Kawawaki, De-En Jiang, Yuichi Negishi
{"title":"Highly Selective Methanol Synthesis Using Electrochemical CO<sub>2</sub> Reduction with Defect-Engineered Cu<sub>58</sub> Nanoclusters.","authors":"Sourav Biswas, Tomoya Tanaka, Haohong Song, Masaki Ogami, Yamato Shingyouchi, Sakiat Hossian, Maho Kamiyama, Taiga Kosaka, Riki Nakatani, Yoshiki Niihori, Saikat Das, Tokuhisa Kawawaki, De-En Jiang, Yuichi Negishi","doi":"10.1002/smsc.202400465","DOIUrl":null,"url":null,"abstract":"<p><p>Atomically precise copper nanoclusters (Cu NCs) exhibit significant potential as catalysts for the electrocatalytic reduction of CO<sub>2</sub>. However, the range of products achievable with these NCs has been somewhat constrained. This study presents an innovative design strategy to enhance the catalytic activity of Cu NCs by engineering their active sites. These active sites are formed here by introducing defects on cubic Cu NCs through the partial dislocation of Cu atoms at their vertices, which creates surface ligand vacancies. This dislocation further refines the internal cationic geometry by altering cuprophilic interactions, leading to distinct modifications in the edges and vertices of the cubic geometry. These unique Cu(I) atom arrangements within the cluster effectively influence product specificity during electrochemical CO<sub>2</sub> reduction. Density functional theory calculations correlate the enhanced selectivity for CH<sub>3</sub>OH in [Cu<sub>58</sub>H<sub>20</sub>(SPr)<sub>36</sub>(PPh<sub>3</sub>)<sub>7</sub>]<sup>2+</sup> (Pr = CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>) NC to the increased reactivity of edge Cu atoms in binding CO and CHO intermediates, compared to [Cu<sub>58</sub>H<sub>20</sub>(SPr)<sub>36</sub>(PPh<sub>3</sub>)<sub>8</sub>]<sup>2+</sup> and [Cu<sub>58</sub>H<sub>20</sub>(SEt)<sub>36</sub>(PPh<sub>3</sub>)<sub>6</sub>]<sup>2+</sup> (Et = CH<sub>2</sub>CH<sub>3</sub>) NCs. Thus, this work underscores the potential of tailored structural designs of atomically precise nanocatalysts in directing electrochemical CO<sub>2</sub> reduction toward unconventional products.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 2","pages":"2400465"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atomically precise copper nanoclusters (Cu NCs) exhibit significant potential as catalysts for the electrocatalytic reduction of CO2. However, the range of products achievable with these NCs has been somewhat constrained. This study presents an innovative design strategy to enhance the catalytic activity of Cu NCs by engineering their active sites. These active sites are formed here by introducing defects on cubic Cu NCs through the partial dislocation of Cu atoms at their vertices, which creates surface ligand vacancies. This dislocation further refines the internal cationic geometry by altering cuprophilic interactions, leading to distinct modifications in the edges and vertices of the cubic geometry. These unique Cu(I) atom arrangements within the cluster effectively influence product specificity during electrochemical CO2 reduction. Density functional theory calculations correlate the enhanced selectivity for CH3OH in [Cu58H20(SPr)36(PPh3)7]2+ (Pr = CH2CH2CH3) NC to the increased reactivity of edge Cu atoms in binding CO and CHO intermediates, compared to [Cu58H20(SPr)36(PPh3)8]2+ and [Cu58H20(SEt)36(PPh3)6]2+ (Et = CH2CH3) NCs. Thus, this work underscores the potential of tailored structural designs of atomically precise nanocatalysts in directing electrochemical CO2 reduction toward unconventional products.

缺陷工程Cu58纳米团簇电化学CO2还原制备高选择性甲醇。
原子精密铜纳米团簇(Cu NCs)作为电催化还原CO2的催化剂表现出巨大的潜力。然而,使用这些nc可实现的产品范围受到了一定的限制。本研究提出了一种创新的设计策略,通过工程设计其活性位点来提高Cu NCs的催化活性。这些活性位点是通过Cu原子的部分位错在立方Cu nc上引入缺陷而形成的,从而产生表面配体空位。这种位错通过改变亲铜相互作用进一步细化了内部阳离子几何结构,导致立方几何结构的边缘和顶点发生明显的变化。簇内这些独特的Cu(I)原子排列有效地影响了电化学CO2还原过程中产物的特异性。密度泛函理论计算表明,与[Cu58H20(SPr)36(PPh3)7]2+ (Pr = CH2CH2CH3) NC相比,[Cu58H20(SPr)36(PPh3)8]2+和[Cu58H20(SEt)36(PPh3)6]2+ (Et = CH2CH3) NC相比,[Cu58H20(SPr)36(PPh3)7]2+ (Pr = CH2CH2CH3) NC中CH3OH选择性的增强与边缘Cu原子在结合CO和CHO中间体中的反应活性的增强有关。因此,这项工作强调了原子精确纳米催化剂的定制结构设计在指导电化学二氧化碳还原到非常规产品方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信