Vivienne P Groner, Jacob Cook, C David L Orme, Priyanga Amarasekare, Edward Comyn-Platt, Taran Rallings, Jaideep Joshi, Robert M Ewers
{"title":"Harmonizing nature's timescales in ecosystem models.","authors":"Vivienne P Groner, Jacob Cook, C David L Orme, Priyanga Amarasekare, Edward Comyn-Platt, Taran Rallings, Jaideep Joshi, Robert M Ewers","doi":"10.1016/j.tree.2025.03.011","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling complex, nonlinear ecosystem processes across different timescales presents a significant challenge. We identify two key issues: selecting a representative timestep that captures interconnected processes across various timescales, and simulating these processes in an appropriate sequence. By synthesizing existing ecosystem frameworks, we find shared compromises between biological realism and computational performance. For the representative timestep, these include 'selective elimination of timescales', 'biting the bullet', 'each in their own time', and 'capture the unseen'. For processing order, we identify hierarchical, logical, iterative, and random approaches. Similar challenges exist in other disciplines, and we show how transferring methods from multiple fields, along with smarter computing, can improve timescale integration. Overcoming these challenges requires innovative transdisciplinary solutions, and we outline directions for future research.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"575-585"},"PeriodicalIF":16.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tree.2025.03.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling complex, nonlinear ecosystem processes across different timescales presents a significant challenge. We identify two key issues: selecting a representative timestep that captures interconnected processes across various timescales, and simulating these processes in an appropriate sequence. By synthesizing existing ecosystem frameworks, we find shared compromises between biological realism and computational performance. For the representative timestep, these include 'selective elimination of timescales', 'biting the bullet', 'each in their own time', and 'capture the unseen'. For processing order, we identify hierarchical, logical, iterative, and random approaches. Similar challenges exist in other disciplines, and we show how transferring methods from multiple fields, along with smarter computing, can improve timescale integration. Overcoming these challenges requires innovative transdisciplinary solutions, and we outline directions for future research.
期刊介绍:
Trends in Ecology & Evolution (TREE) is a comprehensive journal featuring polished, concise, and readable reviews, opinions, and letters in all areas of ecology and evolutionary science. Catering to researchers, lecturers, teachers, field workers, and students, it serves as a valuable source of information. The journal keeps scientists informed about new developments and ideas across the spectrum of ecology and evolutionary biology, spanning from pure to applied and molecular to global perspectives. In the face of global environmental change, Trends in Ecology & Evolution plays a crucial role in covering all significant issues concerning organisms and their environments, making it a major forum for life scientists.