Conversion of disclosed lens power formula constants.

IF 2.6 3区 医学 Q2 OPHTHALMOLOGY
Achim Langenbucher, Peter Hoffmann, Alan Cayless, Jascha Wendelstein, Nóra Szentmáry
{"title":"Conversion of disclosed lens power formula constants.","authors":"Achim Langenbucher, Peter Hoffmann, Alan Cayless, Jascha Wendelstein, Nóra Szentmáry","doi":"10.1097/j.jcrs.0000000000001676","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To present a concept for inter-converting constants of disclosed lens power formulae and to simplify these conversions to linear prediction models for clinical use.</p><p><strong>Setting: </strong>Augen- und Laserklinik Castrop-Rauxel, Germany.</p><p><strong>Design: </strong>Retrospective single centre case series.</p><p><strong>Methods: </strong>Analysis based on a dataset with biometric measurements of 19,472 eyes in a cataractous population performed with the IOLMaster 700. The formula constant conversion from formula A to B includes 2 steps: calculation of the lens power using formula A with variation of formula A constant, and back calculation of the constant for formula B for all constant values of formula A using nonlinear iterative optimization techniques to minimize the sum of squared formula B prediction error.</p><p><strong>Results: </strong>Formula conversion was calculated for the SRK/T A constant (A = 117 to 121), Hoffer Q (pACD = 4.2 to 6.8), Holladay 1 (SF 0.5 to 3.0), Haigis (a0 0.0 to 2.5 with a1/a2 = 0.4/0.1) and Castrop (C 0.15 to 0.50 with H/R = 0.0) formulae. As the conversions follow linear dependencies, linear regression models were fitted to simplify formula constant conversions in clinical routine.</p><p><strong>Conclusion: </strong>Conversions of formula constants could be used in cases where, for example, new lens models are launched with only the nominal SRK/T A constant available, or in situations where constants for some of the formulae are not available. Conversions to constant triplets for the Haigis or Castrop formula require additional nonlinear boundary conditions to take full advantage of formulae with multiple constants.</p>","PeriodicalId":15214,"journal":{"name":"Journal of cataract and refractive surgery","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cataract and refractive surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/j.jcrs.0000000000001676","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To present a concept for inter-converting constants of disclosed lens power formulae and to simplify these conversions to linear prediction models for clinical use.

Setting: Augen- und Laserklinik Castrop-Rauxel, Germany.

Design: Retrospective single centre case series.

Methods: Analysis based on a dataset with biometric measurements of 19,472 eyes in a cataractous population performed with the IOLMaster 700. The formula constant conversion from formula A to B includes 2 steps: calculation of the lens power using formula A with variation of formula A constant, and back calculation of the constant for formula B for all constant values of formula A using nonlinear iterative optimization techniques to minimize the sum of squared formula B prediction error.

Results: Formula conversion was calculated for the SRK/T A constant (A = 117 to 121), Hoffer Q (pACD = 4.2 to 6.8), Holladay 1 (SF 0.5 to 3.0), Haigis (a0 0.0 to 2.5 with a1/a2 = 0.4/0.1) and Castrop (C 0.15 to 0.50 with H/R = 0.0) formulae. As the conversions follow linear dependencies, linear regression models were fitted to simplify formula constant conversions in clinical routine.

Conclusion: Conversions of formula constants could be used in cases where, for example, new lens models are launched with only the nominal SRK/T A constant available, or in situations where constants for some of the formulae are not available. Conversions to constant triplets for the Haigis or Castrop formula require additional nonlinear boundary conditions to take full advantage of formulae with multiple constants.

公开透镜功率公式常数的转换。
目的:提出公开晶状体度数公式相互转换常数的概念,并将这些转换简化为临床使用的线性预测模型。地点:德国卡斯特罗-罗塞尔奥根激光研究所。设计:回顾性单中心病例系列。方法:基于使用IOLMaster 700对白内障患者进行的19,472只眼的生物特征测量数据集进行分析。从公式A到公式B的公式常数转换包括2个步骤:利用公式A计算透镜功率,改变公式A常数,然后利用非线性迭代优化技术对公式A的所有常数值反计算公式B的常数,使公式B的预测误差平方和最小。结果:对SRK/T A常数(A = 117 ~ 121)、Hoffer Q (pACD = 4.2 ~ 6.8)、Holladay 1 (SF 0.5 ~ 3.0)、Haigis (a0 0.0 ~ 2.5, a1/a2 = 0.4/0.1)、Castrop (C 0.15 ~ 0.50, H/R = 0.0)公式进行公式转换。由于转换遵循线性依赖关系,拟合线性回归模型以简化临床常规公式常数转换。结论:公式常数的转换可以在以下情况下使用,例如,新镜头型号推出时只有标称的SRK/T A常数可用,或者在某些公式常数不可用的情况下。将Haigis或Castrop公式转换为常量三元组需要额外的非线性边界条件,以充分利用具有多个常量的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
14.30%
发文量
259
审稿时长
8.5 weeks
期刊介绍: The Journal of Cataract & Refractive Surgery (JCRS), a preeminent peer-reviewed monthly ophthalmology publication, is the official journal of the American Society of Cataract and Refractive Surgery (ASCRS) and the European Society of Cataract and Refractive Surgeons (ESCRS). JCRS publishes high quality articles on all aspects of anterior segment surgery. In addition to original clinical studies, the journal features a consultation section, practical techniques, important cases, and reviews as well as basic science articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信