Memory network and cognitive reserve are associated with preserved and stimulated cholinergic neurotransmission.

Q2 Medicine
Cecilia Boccalini, Daniela Perani, Valentina Garibotto
{"title":"Memory network and cognitive reserve are associated with preserved and stimulated cholinergic neurotransmission.","authors":"Cecilia Boccalini, Daniela Perani, Valentina Garibotto","doi":"10.1016/B978-0-443-19088-9.00014-7","DOIUrl":null,"url":null,"abstract":"<p><p>The cholinergic system plays a central role in cognition and neural function, and, in Alzheimer disease (AD) and Lewy body disease (LBD), it has profound implications for cognitive impairment and dementia. The cholinergic forebrain pathway, innervating the neocortex and limbic system, is crucial for learning, memory, and other essential aspects of cognition and plays a wider role in promoting neuronal plasticity. Given the neuroplasticity processes characterizing the cholinergic regions, this system may be sensitive to modulatory phenomena such as cognitive reserve (CR). The concept of CR has been introduced to account for the fact that individual clinical presentation might be milder than expected based on neuropathology. This mismatch can be explained by individual brain reserve (BR) buildup on life experiences, lifestyles, and neurobiologic factors that are associated with resilience. Sparse findings exist suggesting that the CR might result in an increased or preserved function of the cholinergic system in AD patients, and compensatory mechanisms in the early stages of LBD. The limited availability of effective treatment for neurodegenerative dementia emphasizes the importance of CR and BR, as they play a major role in delaying or slowing disease onset and progression. This chapter will describe the involvement of the cholinergic system in neurodegenerative diseases and the tools for the in vivo assessment, focusing specifically on the evidence suggesting the possibility of its modulation by CR.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"211 ","pages":"137-153"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of clinical neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-443-19088-9.00014-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The cholinergic system plays a central role in cognition and neural function, and, in Alzheimer disease (AD) and Lewy body disease (LBD), it has profound implications for cognitive impairment and dementia. The cholinergic forebrain pathway, innervating the neocortex and limbic system, is crucial for learning, memory, and other essential aspects of cognition and plays a wider role in promoting neuronal plasticity. Given the neuroplasticity processes characterizing the cholinergic regions, this system may be sensitive to modulatory phenomena such as cognitive reserve (CR). The concept of CR has been introduced to account for the fact that individual clinical presentation might be milder than expected based on neuropathology. This mismatch can be explained by individual brain reserve (BR) buildup on life experiences, lifestyles, and neurobiologic factors that are associated with resilience. Sparse findings exist suggesting that the CR might result in an increased or preserved function of the cholinergic system in AD patients, and compensatory mechanisms in the early stages of LBD. The limited availability of effective treatment for neurodegenerative dementia emphasizes the importance of CR and BR, as they play a major role in delaying or slowing disease onset and progression. This chapter will describe the involvement of the cholinergic system in neurodegenerative diseases and the tools for the in vivo assessment, focusing specifically on the evidence suggesting the possibility of its modulation by CR.

记忆网络和认知储备与保留和刺激胆碱能神经传递有关。
胆碱能系统在认知和神经功能中起着核心作用,在阿尔茨海默病(AD)和路易体病(LBD)中,它对认知障碍和痴呆具有深远的影响。胆碱能前脑通路支配着新皮层和边缘系统,对学习、记忆和其他认知的基本方面至关重要,在促进神经元可塑性方面发挥着更广泛的作用。鉴于胆碱能区具有神经可塑性,该系统可能对认知储备(CR)等调节现象敏感。CR的概念已经被引入,以解释个体临床表现可能比基于神经病理学的预期更温和的事实。这种不匹配可以用个人大脑储备(BR)在生活经历、生活方式和与弹性相关的神经生物学因素上的积累来解释。现有的少量研究结果表明,CR可能导致AD患者胆碱能系统功能的增加或保留,以及LBD早期的代偿机制。神经退行性痴呆有效治疗的有限可用性强调了CR和BR的重要性,因为它们在延迟或减缓疾病的发生和进展方面起着重要作用。本章将描述胆碱能系统在神经退行性疾病中的作用,以及体内评估的工具,特别侧重于表明胆碱能系统可能被CR调节的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Handbook of clinical neurology
Handbook of clinical neurology Medicine-Neurology (clinical)
CiteScore
4.10
自引率
0.00%
发文量
302
期刊介绍: The Handbook of Clinical Neurology (HCN) was originally conceived and edited by Pierre Vinken and George Bruyn as a prestigious, multivolume reference work that would cover all the disorders encountered by clinicians and researchers engaged in neurology and allied fields. The first series of the Handbook (Volumes 1-44) was published between 1968 and 1982 and was followed by a second series (Volumes 45-78), guided by the same editors, which concluded in 2002. By that time, the Handbook had come to represent one of the largest scientific works ever published. In 2002, Professors Michael J. Aminoff, François Boller, and Dick F. Swaab took on the responsibility of supervising the third (current) series, the first volumes of which published in 2003. They have designed this series to encompass both clinical neurology and also the basic and clinical neurosciences that are its underpinning. Given the enormity and complexity of the accumulating literature, it is almost impossible to keep abreast of developments in the field, thus providing the raison d''être for the series. The series will thus appeal to clinicians and investigators alike, providing to each an added dimension. Now, more than 140 volumes after it began, the Handbook of Clinical Neurology series has an unparalleled reputation for providing the latest information on fundamental research on the operation of the nervous system in health and disease, comprehensive clinical information on neurological and related disorders, and up-to-date treatment protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信