Multi-scale image edge detection based on spatial-frequency domain interactive attention.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2025-04-28 eCollection Date: 2025-01-01 DOI:10.3389/fnbot.2025.1550939
Yongfei Guo, Bo Li, Wenyue Zhang, Weilong Dong
{"title":"Multi-scale image edge detection based on spatial-frequency domain interactive attention.","authors":"Yongfei Guo, Bo Li, Wenyue Zhang, Weilong Dong","doi":"10.3389/fnbot.2025.1550939","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the many difficulties in accurately locating edges or boundaries in images of animals, plants, buildings, and the like with complex backgrounds, edge detection has become one of the most challenging tasks in the field of computer vision and is also a key step in many computer vision applications. Although existing deep learning-based methods can detect the edges of images relatively well, when the image background is rather complex and the key target is small, accurately detecting the edge of the main body and removing background interference remains a daunting task. Therefore, this paper proposes a multi-scale edge detection network based on spatial-frequency domain interactive attention, aiming to achieve accurate detection of the edge of the main target on multiple scales. The use of the spatial-frequency domain interactive attention module can not only perform significant edge extraction by filtering out some interference in the frequency domain. Moreover, by utilizing the interaction between the frequency domain and the spatial domain, edge features at different scales can be extracted and analyzed more accurately. The obtained results are superior to the current edge detection networks in terms of performance indicators and output image quality.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1550939"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066664/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1550939","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the many difficulties in accurately locating edges or boundaries in images of animals, plants, buildings, and the like with complex backgrounds, edge detection has become one of the most challenging tasks in the field of computer vision and is also a key step in many computer vision applications. Although existing deep learning-based methods can detect the edges of images relatively well, when the image background is rather complex and the key target is small, accurately detecting the edge of the main body and removing background interference remains a daunting task. Therefore, this paper proposes a multi-scale edge detection network based on spatial-frequency domain interactive attention, aiming to achieve accurate detection of the edge of the main target on multiple scales. The use of the spatial-frequency domain interactive attention module can not only perform significant edge extraction by filtering out some interference in the frequency domain. Moreover, by utilizing the interaction between the frequency domain and the spatial domain, edge features at different scales can be extracted and analyzed more accurately. The obtained results are superior to the current edge detection networks in terms of performance indicators and output image quality.

基于空频域交互关注的多尺度图像边缘检测。
由于在动物、植物、建筑物等具有复杂背景的图像中难以准确定位边缘或边界,因此边缘检测已成为计算机视觉领域最具挑战性的任务之一,也是许多计算机视觉应用的关键步骤。虽然现有的基于深度学习的方法可以较好地检测图像的边缘,但当图像背景较为复杂,关键目标较小时,准确检测主体边缘并去除背景干扰仍然是一项艰巨的任务。为此,本文提出了一种基于空频域交互关注的多尺度边缘检测网络,旨在实现多尺度上主目标边缘的精确检测。利用空频域交互注意模块不仅可以通过滤除频域的一些干扰进行显著的边缘提取。此外,利用频域和空域的相互作用,可以更准确地提取和分析不同尺度的边缘特征。所得结果在性能指标和输出图像质量方面都优于当前的边缘检测网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信