Bacterial abundance and antimicrobial resistance prevalence carried by adult house flies (Diptera: Muscidae) at Kansas dairy and beef cattle operations.
Victoria Pickens, Brandon Hall, Kathleen Yeater, Tanya Purvis, Edward Bird, Grant Brooke, Cassandra Olds, Dana Nayduch
{"title":"Bacterial abundance and antimicrobial resistance prevalence carried by adult house flies (Diptera: Muscidae) at Kansas dairy and beef cattle operations.","authors":"Victoria Pickens, Brandon Hall, Kathleen Yeater, Tanya Purvis, Edward Bird, Grant Brooke, Cassandra Olds, Dana Nayduch","doi":"10.1093/jme/tjaf052","DOIUrl":null,"url":null,"abstract":"<p><p>House flies (Musca domestica L.) are filth-breeding pests of urban and rural environments around the world. Frequenting microbe-rich substrates for nutritional and reproductive needs, house flies pose a risk to human and animal health through their carriage and transmission of pathogenic and antimicrobial resistant bacteria (AMR). Adult house flies were collected from Kansas beef and dairy cattle operations to assess factors influencing bacterial abundance and AMR incidence flies. Aerobic culturable bacteria and suspected coliforms (SC) were enumerated from fly homogenate cultured on nonselective (tryptic soy agar) and selective (violet-red bile agar VRBA) media, respectively. Unique morphotypes of SC isolates were screened for tetracycline resistance and tested for resistance to 4 additional antibiotics to identify multi-drug resistant (MDR) isolates. Female house flies carried greater abundances of both culturable bacteria and SC than male flies. Abiotic factors such as ambient and soil temperatures correlated with culturable bacteria and SC abundances in flies, but farm type correlated only with SC abundance and trends of resistance phenotypes observed in SC isolates. Male and female flies from both farm types carried one or more AMR and MDR SC isolates (73.02% AMR and 31.09% MDR). The majority of AMR and MDR bacteria were Escherichia/Shigella sp., which possessed the widest range of phenotypic resistance variability found in our study. Our results further emphasize the role house flies play in harboring bacteria of risk to human and animal health and identified factors of potential use for the development of strategies to mitigate house fly transmission of bacterial pathogens and AMR within confined cattle operations.</p>","PeriodicalId":94091,"journal":{"name":"Journal of medical entomology","volume":" ","pages":"984-994"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jme/tjaf052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
House flies (Musca domestica L.) are filth-breeding pests of urban and rural environments around the world. Frequenting microbe-rich substrates for nutritional and reproductive needs, house flies pose a risk to human and animal health through their carriage and transmission of pathogenic and antimicrobial resistant bacteria (AMR). Adult house flies were collected from Kansas beef and dairy cattle operations to assess factors influencing bacterial abundance and AMR incidence flies. Aerobic culturable bacteria and suspected coliforms (SC) were enumerated from fly homogenate cultured on nonselective (tryptic soy agar) and selective (violet-red bile agar VRBA) media, respectively. Unique morphotypes of SC isolates were screened for tetracycline resistance and tested for resistance to 4 additional antibiotics to identify multi-drug resistant (MDR) isolates. Female house flies carried greater abundances of both culturable bacteria and SC than male flies. Abiotic factors such as ambient and soil temperatures correlated with culturable bacteria and SC abundances in flies, but farm type correlated only with SC abundance and trends of resistance phenotypes observed in SC isolates. Male and female flies from both farm types carried one or more AMR and MDR SC isolates (73.02% AMR and 31.09% MDR). The majority of AMR and MDR bacteria were Escherichia/Shigella sp., which possessed the widest range of phenotypic resistance variability found in our study. Our results further emphasize the role house flies play in harboring bacteria of risk to human and animal health and identified factors of potential use for the development of strategies to mitigate house fly transmission of bacterial pathogens and AMR within confined cattle operations.