{"title":"Artificial intelligence-powered four-fold upscaling of human brain synthetic metabolite maps.","authors":"Erin B Bjørkeli, Jonn T Geitung, Morteza Esmaeili","doi":"10.1177/03000605251330578","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveCompared with anatomical magnetic resonance imaging modalities, metabolite images from magnetic resonance spectroscopic imaging often suffer from low quality and detail due to their larger voxel sizes. Conventional interpolation techniques aim to enhance these low-resolution images; however, they frequently struggle with issues such as edge preservation, blurring, and input quality limitations. This study explores an artificial intelligence-driven approach to improve the quality of synthetically generated metabolite maps.MethodsUsing an open-access database of 450 participants, we trained and tested a model on 350 participants, evaluating its performance against spline and nearest-neighbor interpolation methods. Metrics such as structural similarity index, peak signal-to-noise ratio, and learned perceptual image patch similarity were used for comparison.ResultsOur model not only increased spatial resolution but also preserved critical image details, outperforming traditional interpolation methods in both image fidelity and edge preservation.ConclusionsThis artificial intelligence-powered super-resolution technique could substantially enhance magnetic resonance spectroscopic imaging quality, aiding in more accurate neurological assessments.</p>","PeriodicalId":16129,"journal":{"name":"Journal of International Medical Research","volume":"53 4","pages":"3000605251330578"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of International Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/03000605251330578","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
ObjectiveCompared with anatomical magnetic resonance imaging modalities, metabolite images from magnetic resonance spectroscopic imaging often suffer from low quality and detail due to their larger voxel sizes. Conventional interpolation techniques aim to enhance these low-resolution images; however, they frequently struggle with issues such as edge preservation, blurring, and input quality limitations. This study explores an artificial intelligence-driven approach to improve the quality of synthetically generated metabolite maps.MethodsUsing an open-access database of 450 participants, we trained and tested a model on 350 participants, evaluating its performance against spline and nearest-neighbor interpolation methods. Metrics such as structural similarity index, peak signal-to-noise ratio, and learned perceptual image patch similarity were used for comparison.ResultsOur model not only increased spatial resolution but also preserved critical image details, outperforming traditional interpolation methods in both image fidelity and edge preservation.ConclusionsThis artificial intelligence-powered super-resolution technique could substantially enhance magnetic resonance spectroscopic imaging quality, aiding in more accurate neurological assessments.
期刊介绍:
_Journal of International Medical Research_ is a leading international journal for rapid publication of original medical, pre-clinical and clinical research, reviews, preliminary and pilot studies on a page charge basis.
As a service to authors, every article accepted by peer review will be given a full technical edit to make papers as accessible and readable to the international medical community as rapidly as possible.
Once the technical edit queries have been answered to the satisfaction of the journal, the paper will be published and made available freely to everyone under a creative commons licence.
Symposium proceedings, summaries of presentations or collections of medical, pre-clinical or clinical data on a specific topic are welcome for publication as supplements.
Print ISSN: 0300-0605