Martina Lucchesi, Letizia Biso, Marco Bonaso, Biancamaria Longoni, Bianca Buchignani, Roberta Battini, Filippo Maria Santorelli, Stefano Doccini, Marco Scarselli
{"title":"Mitochondrial Dysfunction in Genetic and Non-Genetic Parkinson's Disease.","authors":"Martina Lucchesi, Letizia Biso, Marco Bonaso, Biancamaria Longoni, Bianca Buchignani, Roberta Battini, Filippo Maria Santorelli, Stefano Doccini, Marco Scarselli","doi":"10.3390/ijms26094451","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction is a hallmark of Parkinson's disease (PD) pathogenesis, contributing to increased oxidative stress and impaired endo-lysosomal-proteasome system efficiency underlying neuronal injury. Genetic studies have identified 19 monogenic mutations-accounting for ~10% of PD cases-that affect mitochondrial function and are associated with early- or late-onset PD. Early-onset forms typically involve genes encoding proteins essential for mitochondrial quality control, including mitophagy and structural maintenance, while late-onset mutations impair mitochondrial dynamics, bioenergetics, and trafficking. Atypical juvenile genetic syndromes also exhibit mitochondrial abnormalities. In idiopathic PD, environmental neurotoxins such as pesticides and MPTP act as mitochondrial inhibitors, disrupting complex I activity and increasing reactive oxygen species. These converging pathways underscore mitochondria as a central node in PD pathology. This review explores the overlapping and distinct mitochondrial mechanisms in genetic and non-genetic PD, emphasizing their role in neuronal vulnerability. Targeting mitochondrial dysfunction finally offers a promising therapeutic avenue to slow or modify disease progression by intervening at a key point of neurodegenerative convergence.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12072996/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26094451","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial dysfunction is a hallmark of Parkinson's disease (PD) pathogenesis, contributing to increased oxidative stress and impaired endo-lysosomal-proteasome system efficiency underlying neuronal injury. Genetic studies have identified 19 monogenic mutations-accounting for ~10% of PD cases-that affect mitochondrial function and are associated with early- or late-onset PD. Early-onset forms typically involve genes encoding proteins essential for mitochondrial quality control, including mitophagy and structural maintenance, while late-onset mutations impair mitochondrial dynamics, bioenergetics, and trafficking. Atypical juvenile genetic syndromes also exhibit mitochondrial abnormalities. In idiopathic PD, environmental neurotoxins such as pesticides and MPTP act as mitochondrial inhibitors, disrupting complex I activity and increasing reactive oxygen species. These converging pathways underscore mitochondria as a central node in PD pathology. This review explores the overlapping and distinct mitochondrial mechanisms in genetic and non-genetic PD, emphasizing their role in neuronal vulnerability. Targeting mitochondrial dysfunction finally offers a promising therapeutic avenue to slow or modify disease progression by intervening at a key point of neurodegenerative convergence.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).