Advancing Nuclear Medicine through Discovery, Invention, and Innovation - Contribution of a Physicist and Scientist (Vikram Sarabhai Memorial Oration-2023).

IF 0.4 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Indian Journal of Nuclear Medicine Pub Date : 2024-11-01 Epub Date: 2025-03-20 DOI:10.4103/ijnm.ijnm_118_24
Ashish Kumar Jha
{"title":"Advancing Nuclear Medicine through Discovery, Invention, and Innovation - Contribution of a Physicist and Scientist (Vikram Sarabhai Memorial Oration-2023).","authors":"Ashish Kumar Jha","doi":"10.4103/ijnm.ijnm_118_24","DOIUrl":null,"url":null,"abstract":"<p><p>The history of radiation science began with Wilhelm Rontgen's discovery of X-rays in 1895, followed closely by Henri Becquerel's discovery of radioactivity in 1896. Subsequent research focused on developing radioisotope technology and exploring its applications in medical diagnosis and treatment. The first recorded use of radioisotopes for tumor treatment was by William Dune in Marie Curie's laboratory. George D Heawse employed radioisotopes to study plant and animal physiology. Irene and Joliot Curie pioneered the production of artificial radioisotopes using alpha particle bombardment. Ernest O. Lawrence's invention of the cyclotron furthered the development of artificial isotopes. His brother John Lawrence treated the first patient with cyclotron-produced phosphorus-32. Glenn Seaborg's discovery of Tc-99m and I-131 led to the development of radioiodine therapy by Saul Hertz and many diagnostic procedures using Tc-99m. Bendit Casin invented the rectilinear scanner, a pioneering imaging device, while Hal Anger developed the gamma camera. Over time, the contributions of researchers, scientists, engineers, and physicians have advanced the field of nuclear medicine, resulting in state-of-the-art equipment such as positron emission tomography (PET)/magnetic resonance imaging (MRI), positron emission tomography (PET)/computed tomography (CT), single-photon emission computed tomography (SPECT)/computed tomography (CT), and many other innovative technologies.</p>","PeriodicalId":45830,"journal":{"name":"Indian Journal of Nuclear Medicine","volume":"39 6","pages":"421-427"},"PeriodicalIF":0.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020969/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ijnm.ijnm_118_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The history of radiation science began with Wilhelm Rontgen's discovery of X-rays in 1895, followed closely by Henri Becquerel's discovery of radioactivity in 1896. Subsequent research focused on developing radioisotope technology and exploring its applications in medical diagnosis and treatment. The first recorded use of radioisotopes for tumor treatment was by William Dune in Marie Curie's laboratory. George D Heawse employed radioisotopes to study plant and animal physiology. Irene and Joliot Curie pioneered the production of artificial radioisotopes using alpha particle bombardment. Ernest O. Lawrence's invention of the cyclotron furthered the development of artificial isotopes. His brother John Lawrence treated the first patient with cyclotron-produced phosphorus-32. Glenn Seaborg's discovery of Tc-99m and I-131 led to the development of radioiodine therapy by Saul Hertz and many diagnostic procedures using Tc-99m. Bendit Casin invented the rectilinear scanner, a pioneering imaging device, while Hal Anger developed the gamma camera. Over time, the contributions of researchers, scientists, engineers, and physicians have advanced the field of nuclear medicine, resulting in state-of-the-art equipment such as positron emission tomography (PET)/magnetic resonance imaging (MRI), positron emission tomography (PET)/computed tomography (CT), single-photon emission computed tomography (SPECT)/computed tomography (CT), and many other innovative technologies.

通过发现、发明和创新推进核医学——物理学家和科学家的贡献(Vikram Sarabhai纪念演讲-2023)。
辐射科学的历史始于1895年威廉·伦琴发现x射线,紧接着是1896年亨利·贝克勒尔发现放射性。随后的研究重点是发展放射性同位素技术并探索其在医学诊断和治疗中的应用。第一个使用放射性同位素治疗肿瘤的记录是由居里夫人的实验室里的威廉·杜恩发明的。乔治·D·海斯利用放射性同位素研究植物和动物生理学。艾琳·居里和约里奥·居里开创了利用α粒子轰击制造人工放射性同位素的先河。欧内斯特·o·劳伦斯发明的回旋加速器进一步推动了人工同位素的发展。他的兄弟约翰·劳伦斯用回旋加速器产生的磷-32治疗了第一位病人。Glenn Seaborg对Tc-99m和I-131的发现导致了Saul Hertz的放射性碘疗法和许多使用Tc-99m的诊断程序的发展。本迪特·卡辛发明了直线扫描仪,这是一种开创性的成像设备,而哈尔·安吉则发明了伽马照相机。随着时间的推移,研究人员、科学家、工程师和医生的贡献推动了核医学领域的发展,产生了最先进的设备,如正电子发射断层扫描(PET)/磁共振成像(MRI)、正电子发射断层扫描(PET)/计算机断层扫描(CT)、单光子发射计算机断层扫描(SPECT)/计算机断层扫描(CT),以及许多其他创新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Nuclear Medicine
Indian Journal of Nuclear Medicine RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
0.70
自引率
0.00%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信