Alterations in static and dynamic functional network connectivity in chronic low back pain: a resting-state network functional connectivity and machine learning study.
{"title":"Alterations in static and dynamic functional network connectivity in chronic low back pain: a resting-state network functional connectivity and machine learning study.","authors":"Hao Liu, Xin Wan","doi":"10.1097/WNR.0000000000002158","DOIUrl":null,"url":null,"abstract":"<p><p>Low back pain (LBP) is a prevalent pain condition whose persistence can lead to changes in the brain regions responsible for sensory, cognitive, attentional, and emotional processing. Previous neuroimaging studies have identified various structural and functional abnormalities in patients with LBP; however, how the static and dynamic large-scale functional network connectivity (FNC) of the brain is affected in these patients remains unclear. Forty-one patients with chronic low back pain (cLBP) and 42 healthy controls underwent resting-state functional MRI scanning. The independent component analysis method was employed to extract the resting-state networks. Subsequently, we calculate and compare between groups for static intra- and inter-network functional connectivity. In addition, we investigated the differences between dynamic functional network connectivity and dynamic temporal metrics between cLBP patients and healthy controls. Finally, we tried to distinguish cLBP patients from healthy controls by support vector machine method. The results showed that significant reductions in functional connectivity within the network were found within the DMN,DAN, and ECN in cLBP patients. Significant between-group differences were also found in static FNC and in each state of dynamic FNC. In addition, in terms of dynamic temporal metrics, fraction time and mean dwell time were significantly altered in cLBP patients. In conclusion, our study suggests the existence of static and dynamic large-scale brain network alterations in patients with cLBP. The findings provide insights into the neural mechanisms underlying various brain function abnormalities and altered pain experiences in patients with cLBP.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":"36 7","pages":"364-377"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002158","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Low back pain (LBP) is a prevalent pain condition whose persistence can lead to changes in the brain regions responsible for sensory, cognitive, attentional, and emotional processing. Previous neuroimaging studies have identified various structural and functional abnormalities in patients with LBP; however, how the static and dynamic large-scale functional network connectivity (FNC) of the brain is affected in these patients remains unclear. Forty-one patients with chronic low back pain (cLBP) and 42 healthy controls underwent resting-state functional MRI scanning. The independent component analysis method was employed to extract the resting-state networks. Subsequently, we calculate and compare between groups for static intra- and inter-network functional connectivity. In addition, we investigated the differences between dynamic functional network connectivity and dynamic temporal metrics between cLBP patients and healthy controls. Finally, we tried to distinguish cLBP patients from healthy controls by support vector machine method. The results showed that significant reductions in functional connectivity within the network were found within the DMN,DAN, and ECN in cLBP patients. Significant between-group differences were also found in static FNC and in each state of dynamic FNC. In addition, in terms of dynamic temporal metrics, fraction time and mean dwell time were significantly altered in cLBP patients. In conclusion, our study suggests the existence of static and dynamic large-scale brain network alterations in patients with cLBP. The findings provide insights into the neural mechanisms underlying various brain function abnormalities and altered pain experiences in patients with cLBP.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.