Piezoelectric dual-network tough hydrogel with on-demand thermal contraction and sonopiezoelectric effect for promoting infected-joint-skin-wound healing via FAK and AKT signaling pathways.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-03-29 eCollection Date: 2025-05-01 DOI:10.1093/nsr/nwaf118
Jinlong Luo, Zhen Liang, Xin Zhao, Shengfei Huang, Yanan Gu, Zexing Deng, Jing Ye, Xingmei Cai, Yong Han, Baolin Guo
{"title":"Piezoelectric dual-network tough hydrogel with on-demand thermal contraction and sonopiezoelectric effect for promoting infected-joint-skin-wound healing via FAK and AKT signaling pathways.","authors":"Jinlong Luo, Zhen Liang, Xin Zhao, Shengfei Huang, Yanan Gu, Zexing Deng, Jing Ye, Xingmei Cai, Yong Han, Baolin Guo","doi":"10.1093/nsr/nwaf118","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic and whole stage management of infected wound healing throughout the entire repair process, including intelligent on-demand wound closure and the regulation of the transition from bactericidal to reparative phases, remains a major challenge. This study develops sonopiezoelectric-effect-mediated on-demand reactive-oxygen-species release by incorporating piezoelectric barium titanate modified with gold nanoparticles and a thermally responsive dual-network tough hydrogel dressing with a physical network structure based on ureidopyrimidinone-modified gelatin crosslinked by multiple hydrogen bonds, and with a chemical network structure based on N-isopropylacrylamide and methacryloyl gelatin formed via radical polymerization. This hydrogel exhibits temperature-sensitive softening, on-demand thermal contraction performance, high mechanical strength, good tissue adhesion, outstanding piezoelectricity, tunable sonopiezoelectric behavior, regulatable photothermal properties and desirable biocompatibility. The tunable sonopiezoelectric effect enables the hydrogel to eliminate wound bacteria in the short term, and effectively promote human fibroblast proliferation and migration over the long term. The hydrogel dressing actively contracts to close wound edges and further promotes the healing of MRSA-infected skin defects in the neck of mice by promoting fibroblast migration, enhancing collagen deposition and facilitating angiogenesis via up-regulating the FAK and AKT signaling pathways, providing a novel design strategy for developing dressings targeting chronic joint-skin wounds.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 5","pages":"nwaf118"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042750/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf118","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic and whole stage management of infected wound healing throughout the entire repair process, including intelligent on-demand wound closure and the regulation of the transition from bactericidal to reparative phases, remains a major challenge. This study develops sonopiezoelectric-effect-mediated on-demand reactive-oxygen-species release by incorporating piezoelectric barium titanate modified with gold nanoparticles and a thermally responsive dual-network tough hydrogel dressing with a physical network structure based on ureidopyrimidinone-modified gelatin crosslinked by multiple hydrogen bonds, and with a chemical network structure based on N-isopropylacrylamide and methacryloyl gelatin formed via radical polymerization. This hydrogel exhibits temperature-sensitive softening, on-demand thermal contraction performance, high mechanical strength, good tissue adhesion, outstanding piezoelectricity, tunable sonopiezoelectric behavior, regulatable photothermal properties and desirable biocompatibility. The tunable sonopiezoelectric effect enables the hydrogel to eliminate wound bacteria in the short term, and effectively promote human fibroblast proliferation and migration over the long term. The hydrogel dressing actively contracts to close wound edges and further promotes the healing of MRSA-infected skin defects in the neck of mice by promoting fibroblast migration, enhancing collagen deposition and facilitating angiogenesis via up-regulating the FAK and AKT signaling pathways, providing a novel design strategy for developing dressings targeting chronic joint-skin wounds.

具有按需热收缩和声压电效应的压电双网络强韧水凝胶通过FAK和AKT信号通路促进感染关节皮肤伤口愈合。
在整个修复过程中,感染伤口愈合的动态和全阶段管理,包括智能按需伤口闭合和从杀菌阶段到修复阶段的过渡调节,仍然是一个主要挑战。本研究采用金纳米粒子修饰的压电钛酸钡和一种热响应的双网络强韧水凝胶敷料,其物理网络结构是由多个氢键交联的脲嘧啶修饰明胶,化学网络结构是由自由基聚合形成的n-异丙基丙烯酰胺和甲基丙烯酰明胶。该水凝胶具有温度敏感软化、随需应变的热收缩性能、高机械强度、良好的组织粘附性、出色的压电性、可调谐的声压电行为、可调节的光热性能和理想的生物相容性。可调节的声压电效应使水凝胶在短期内消除伤口细菌,长期有效促进人成纤维细胞增殖和迁移。水凝胶敷料主动收缩闭合创面边缘,通过上调FAK和AKT信号通路促进成纤维细胞迁移、促进胶原沉积和促进血管生成,进一步促进mrsa感染小鼠颈部皮肤缺损愈合,为开发针对慢性关节皮肤创面的敷料提供了一种新的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信