Composition and Neurogenetic Effects of Embryonic Cerebrospinal Fluid: A Systematic Review.

IF 3.3 4区 医学 Q2 NEUROSCIENCES
Ana Călina Beldean, Radu Cristian Moldovan, Olga Sorițău, Ștefan Strilciuc, Răzvan Ciortea, Fior Dafin Mureșanu, Alina Vasilica Blesneag, Ștefan Florian, Alexandru Cristian Bolunduț, Sergiu Șușman
{"title":"Composition and Neurogenetic Effects of Embryonic Cerebrospinal Fluid: A Systematic Review.","authors":"Ana Călina Beldean, Radu Cristian Moldovan, Olga Sorițău, Ștefan Strilciuc, Răzvan Ciortea, Fior Dafin Mureșanu, Alina Vasilica Blesneag, Ștefan Florian, Alexandru Cristian Bolunduț, Sergiu Șușman","doi":"10.1007/s12017-025-08829-1","DOIUrl":null,"url":null,"abstract":"<p><p>Embryonic cerebrospinal fluid (E-CSF) has an important role in neurological development. Due to limited availability, the composition and properties of E-CSF are not known to the present. Our review aims to offer a comprehensive perspective over the studies published to date regarding the composition and effects of E-CSF. We performed a systematic search of four databases for studies regarding normal E-CSF, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We screened 725 records for eligibility criteria, resulting in 44 studies included in the narrative synthesis. Of these, four compared E-CSF with postnatal CSF, and three studies used human E-CSF for composition description. The most comprehensive set of molecular analyses was performed via mass spectrometry, in four studies. We observed a decrease in the number of published studies in the last 5 years. All included studies showed better results when cells were cultured in E-CSF than basal medium. Research on E-CSF remains sparse, particularly concerning its role in human developmental neurobiology. The heterogeneous nature of the study designs and experimental approaches showcase the need for standardized methodologies to better understand the unique properties and potential clinical applications of E-CSF.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"33"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08829-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Embryonic cerebrospinal fluid (E-CSF) has an important role in neurological development. Due to limited availability, the composition and properties of E-CSF are not known to the present. Our review aims to offer a comprehensive perspective over the studies published to date regarding the composition and effects of E-CSF. We performed a systematic search of four databases for studies regarding normal E-CSF, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We screened 725 records for eligibility criteria, resulting in 44 studies included in the narrative synthesis. Of these, four compared E-CSF with postnatal CSF, and three studies used human E-CSF for composition description. The most comprehensive set of molecular analyses was performed via mass spectrometry, in four studies. We observed a decrease in the number of published studies in the last 5 years. All included studies showed better results when cells were cultured in E-CSF than basal medium. Research on E-CSF remains sparse, particularly concerning its role in human developmental neurobiology. The heterogeneous nature of the study designs and experimental approaches showcase the need for standardized methodologies to better understand the unique properties and potential clinical applications of E-CSF.

胚胎脑脊液的组成及其神经遗传作用:系统综述。
胚胎脑脊液(E-CSF)在神经发育中具有重要作用。由于可用性有限,目前尚不清楚E-CSF的组成和性质。我们的综述旨在对迄今为止发表的关于E-CSF的组成和作用的研究提供一个全面的视角。根据系统评价和荟萃分析(PRISMA)指南的首选报告项目,我们对四个数据库进行了关于正常E-CSF研究的系统搜索。我们筛选了725条记录作为合格标准,最终将44项研究纳入叙事综合。其中,四项研究将E-CSF与出生后CSF进行比较,三项研究使用人类E-CSF进行成分描述。在四项研究中,最全面的分子分析是通过质谱法进行的。我们观察到,在过去的5年里,发表的研究数量有所减少。所有纳入的研究都表明,细胞在E-CSF中培养比在基础培养基中培养效果更好。关于E-CSF的研究仍然很少,特别是关于它在人类发育神经生物学中的作用。研究设计和实验方法的异质性表明需要标准化的方法来更好地理解E-CSF的独特性质和潜在的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信