Neural and vascular contributions to sensory impairments in a human alpha-synuclein transgenic mouse model of Parkinson's disease.

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Ruxanda Lungu, Francisca F Fernandes, Sara Pires Monteiro, Tiago F Outeiro, Noam Shemesh
{"title":"Neural and vascular contributions to sensory impairments in a human alpha-synuclein transgenic mouse model of Parkinson's disease.","authors":"Ruxanda Lungu, Francisca F Fernandes, Sara Pires Monteiro, Tiago F Outeiro, Noam Shemesh","doi":"10.1177/0271678X251338952","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a complex progressive neurodegenerative disorder involving hallmarks such as <math><mi>α</mi></math>-Synuclein (<math><mi>α</mi></math>Syn) aggregation and dopaminergic dysfunction that affect brain-wide neural activity. Although movement disorders are prominent in PD, sensory impairments also occur relatively early on, mainly in olfactory and, to a lesser extent visual systems. While these deficits have been described mainly at the behavioral and molecular levels, the underlying network-level activity remains poorly understood. Here, we harnessed a human <math><mi>α</mi></math>Syn transgenic mouse model of PD with <i>in vivo</i> functional MRI (fMRI) to map evoked activity in the visual and olfactory pathways, along with pseudo-Continuous Arterial Spin Labeling (pCASL) and c-FOS measurements to disentangle vascular from neuronal effects. Upon stimulation with either odors or flickering lights, we found significant decreases in fMRI responses along both olfactory and visual pathways, in multiple cortical and subcortical sensory areas. Average Cerebral Blood Flow rates were decreased by ∼10% in the <math><mi>α</mi></math>Syn group, while c-FOS levels were reduced by over 50%, suggesting a strong neural driver for the dysfunction, along with more modest vascular contributions. Our study provides insight into brain-level activity in an <math><mi>α</mi></math>Syn-based model, and suggests a novel target for biomarking via quantification of simple sensory evoked responses.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251338952"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058711/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251338952","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a complex progressive neurodegenerative disorder involving hallmarks such as α-Synuclein (αSyn) aggregation and dopaminergic dysfunction that affect brain-wide neural activity. Although movement disorders are prominent in PD, sensory impairments also occur relatively early on, mainly in olfactory and, to a lesser extent visual systems. While these deficits have been described mainly at the behavioral and molecular levels, the underlying network-level activity remains poorly understood. Here, we harnessed a human αSyn transgenic mouse model of PD with in vivo functional MRI (fMRI) to map evoked activity in the visual and olfactory pathways, along with pseudo-Continuous Arterial Spin Labeling (pCASL) and c-FOS measurements to disentangle vascular from neuronal effects. Upon stimulation with either odors or flickering lights, we found significant decreases in fMRI responses along both olfactory and visual pathways, in multiple cortical and subcortical sensory areas. Average Cerebral Blood Flow rates were decreased by ∼10% in the αSyn group, while c-FOS levels were reduced by over 50%, suggesting a strong neural driver for the dysfunction, along with more modest vascular contributions. Our study provides insight into brain-level activity in an αSyn-based model, and suggests a novel target for biomarking via quantification of simple sensory evoked responses.

在人类α -突触核蛋白转基因帕金森病小鼠模型中,神经和血管对感觉障碍的贡献。
帕金森病(PD)是一种复杂的进行性神经退行性疾病,包括α-突触核蛋白(αSyn)聚集和多巴胺能功能障碍等影响全脑神经活动的特征。虽然运动障碍在PD中很突出,但感觉障碍也会在相对较早的时候发生,主要发生在嗅觉系统,在较小程度上也发生在视觉系统。虽然这些缺陷主要是在行为和分子水平上描述的,但潜在的网络水平的活动仍然知之甚少。在这里,我们利用人αSyn转基因PD小鼠模型,利用体内功能MRI (fMRI)来绘制视觉和嗅觉通路的诱发活动,以及伪连续动脉自旋标记(pCASL)和c-FOS测量来从神经元效应中分离血管。在气味或闪烁的灯光刺激下,我们发现在多个皮层和皮层下感觉区域,沿着嗅觉和视觉通路的fMRI反应显著下降。αSyn组的平均脑血流量降低了10%,而c-FOS水平降低了50%以上,这表明功能障碍有很强的神经驱动因素,而血管的作用则较小。我们的研究提供了基于α syn模型的大脑水平活动的见解,并提出了通过量化简单感觉诱发反应进行生物标记的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信