{"title":"Evaluation of the Characteristics of Digital Light Processing 3D-Printed Magnesium Calcium Phosphate for Bone Regeneration.","authors":"Peng Zhang, Meiling Zhang, Yoo-Na Jung, Seong-Won Choi, Yong-Seok Lee, Geelsu Hwang, Kwi-Dug Yun","doi":"10.3390/jfb16040139","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in three-dimensional (3D) printing technology, particularly digital light processing (DLP) 3D printing, have enabled the customization of bone substitutes with specific shapes that match bone defect sizes and geometries. Magnesium calcium phosphate (MCP) has gained considerable attention due to its strong mechanical properties, degradability, and ability to promote bone regeneration. In this study, we prepared MCP samples with five different molar ratios via DLP 3D printing. We analyzed the physicochemical properties of these five groups, including phase compositions and microstructures, which were examined using X-ray diffraction and scanning electron microscopy, respectively. Additionally, we assessed the effects of MCP on material density and shrinkage. Biaxial flexural strength and degradation rate were evaluated; biological properties were examined through WST-8 analysis and alkaline phosphatase activity assays. Among the tested samples, MCP1/1 exhibited the highest strength. A higher proportion of magnesium phosphate in MCP corresponded to an increased degradation rate. Cell response observations in the WST-8 assay indicated that cell proliferation was better in the MCP1/1 group than in the other groups on days 4 and 7 of culturing. Alkaline phosphatase activity assays demonstrated that MCP1/1 exhibited higher activity than calcium phosphate. Our findings suggest that MCP1/1 can be used effectively in bone-tissue-engineering applications.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 4","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16040139","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in three-dimensional (3D) printing technology, particularly digital light processing (DLP) 3D printing, have enabled the customization of bone substitutes with specific shapes that match bone defect sizes and geometries. Magnesium calcium phosphate (MCP) has gained considerable attention due to its strong mechanical properties, degradability, and ability to promote bone regeneration. In this study, we prepared MCP samples with five different molar ratios via DLP 3D printing. We analyzed the physicochemical properties of these five groups, including phase compositions and microstructures, which were examined using X-ray diffraction and scanning electron microscopy, respectively. Additionally, we assessed the effects of MCP on material density and shrinkage. Biaxial flexural strength and degradation rate were evaluated; biological properties were examined through WST-8 analysis and alkaline phosphatase activity assays. Among the tested samples, MCP1/1 exhibited the highest strength. A higher proportion of magnesium phosphate in MCP corresponded to an increased degradation rate. Cell response observations in the WST-8 assay indicated that cell proliferation was better in the MCP1/1 group than in the other groups on days 4 and 7 of culturing. Alkaline phosphatase activity assays demonstrated that MCP1/1 exhibited higher activity than calcium phosphate. Our findings suggest that MCP1/1 can be used effectively in bone-tissue-engineering applications.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.