Metagenomic analysis reveals microbial drivers of heat resistance in dairy cattle.

IF 4.9 Q1 MICROBIOLOGY
Mingxun Li, Zhiwei Wang, Zheng Ma, Yangyang Wang, Haoran Jia, Lei Zhang, Peng Chen, Yongjiang Mao, Zhangping Yang
{"title":"Metagenomic analysis reveals microbial drivers of heat resistance in dairy cattle.","authors":"Mingxun Li, Zhiwei Wang, Zheng Ma, Yangyang Wang, Haoran Jia, Lei Zhang, Peng Chen, Yongjiang Mao, Zhangping Yang","doi":"10.1186/s42523-025-00399-8","DOIUrl":null,"url":null,"abstract":"<p><p>Heat stress poses a significant challenge to dairy cattle, leading to adverse physiological effects, reduced milk yield, impaired reproduction performance and economic losses. This study investigates the role of the rumen microbiome in mediating heat resistance in dairy cows. Using the entropy-weighted TOPSIS method, we classified 120 dairy cows into heat-resistant (HR) and heat-sensitive (HS) groups based on physiological and biochemical markers, including rectal temperature (RT), respiratory rate (RR), salivation index (SI) and serum levels of potassium ion (K<sup>+</sup>), heat shock protein 70 (HSP70) and cortisol. Metagenomic sequencing of rumen fluid samples revealed distinct microbial compositions and functional profiles between the two groups. HR cows exhibited a more cohesive and functionally stable microbiome, dominated by taxa such as Ruminococcus flavefaciens and Succiniclasticum, which are key players in fiber degradation and short-chain fatty acid production. Functional analysis highlighted the enrichment of the pentose phosphate pathway (PPP) in HR cows, suggesting a metabolic adaptation that enhances oxidative stress management. In contrast, HS cows showed increased activity in the tricarboxylic acid (TCA) cycle, pyruvate metabolism and other energy-intensive pathways, indicating a higher metabolic burden under heat stress. These findings underscore the critical role of the rumen microbiome in modulating heat resistance and suggest potential microbiome-based strategies for improving dairy cattle resilience to climate change.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"35"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11984055/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-025-00399-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heat stress poses a significant challenge to dairy cattle, leading to adverse physiological effects, reduced milk yield, impaired reproduction performance and economic losses. This study investigates the role of the rumen microbiome in mediating heat resistance in dairy cows. Using the entropy-weighted TOPSIS method, we classified 120 dairy cows into heat-resistant (HR) and heat-sensitive (HS) groups based on physiological and biochemical markers, including rectal temperature (RT), respiratory rate (RR), salivation index (SI) and serum levels of potassium ion (K+), heat shock protein 70 (HSP70) and cortisol. Metagenomic sequencing of rumen fluid samples revealed distinct microbial compositions and functional profiles between the two groups. HR cows exhibited a more cohesive and functionally stable microbiome, dominated by taxa such as Ruminococcus flavefaciens and Succiniclasticum, which are key players in fiber degradation and short-chain fatty acid production. Functional analysis highlighted the enrichment of the pentose phosphate pathway (PPP) in HR cows, suggesting a metabolic adaptation that enhances oxidative stress management. In contrast, HS cows showed increased activity in the tricarboxylic acid (TCA) cycle, pyruvate metabolism and other energy-intensive pathways, indicating a higher metabolic burden under heat stress. These findings underscore the critical role of the rumen microbiome in modulating heat resistance and suggest potential microbiome-based strategies for improving dairy cattle resilience to climate change.

宏基因组分析揭示了奶牛耐热性的微生物驱动因素。
热应激对奶牛构成重大挑战,导致不利的生理影响、产奶量降低、繁殖性能受损和经济损失。本研究探讨了奶牛瘤胃微生物群在调节奶牛耐热性中的作用。采用熵加权TOPSIS法,根据120头奶牛的直肠温度(RT)、呼吸频率(RR)、流涎指数(SI)、血清钾离子(K+)、热休克蛋白70 (HSP70)和皮质醇水平等生理生化指标,将其分为耐热组(HR)和热敏组(HS)。瘤胃液样本的宏基因组测序显示了两组之间不同的微生物组成和功能特征。HR奶牛表现出更强的凝聚力和功能稳定的微生物群,以黄瘤球菌和琥珀酸球菌等类群为主,它们在纤维降解和短链脂肪酸生产中起关键作用。功能分析显示,在HR奶牛中戊糖磷酸途径(PPP)富集,表明代谢适应增强了氧化应激管理。相比之下,HS奶牛在三羧酸(TCA)循环、丙酮酸代谢和其他能量密集型途径中活性增加,表明热应激下代谢负担加重。这些发现强调了瘤胃微生物组在调节耐热性中的关键作用,并为提高奶牛对气候变化的适应能力提出了潜在的基于微生物组的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信