{"title":"Coordination of economics and hydraulic traits shapes the adaptive strategies of tree species in two forest communities with distinct water regimes.","authors":"Shen-Si Liu, Yong-Jiao Zhou, Ke-Xin Guo, Shen-Hao Song, Dafubaiyila Zhao, Wen-Ming Ding, Fang Xiu, Guang-You Hao","doi":"10.1093/treephys/tpaf056","DOIUrl":null,"url":null,"abstract":"<p><p>Species distribution is strongly driven by local resource availability, while the coordination and trade-offs among plant functional traits can reveal their adaptive strategies and community assembly in environments of different resource availability. Plant economics and hydraulic traits play fundamental roles in plant environmental adaptation; however, how these key functional traits contribute to the formation of different adaptive strategies to shape community assembly in different environments remains largely unknown. Here, we assess the role of coordinated carbon economics and hydraulic strategies in shaping tree adaptation in environments with two distinct water regimes. We analyzed 20 leaf, stem and root functional traits related to plant economics and hydraulics for 10 tree species from a dry sandy land community and 10 tree species from a neighboring wet valley community. We found an economics spectrum that is coordinated with hydraulic traits, conveying a trade-off between stress tolerance associated with high tissue construction cost and resource acquisition efficiency. Trees in the dry sandy land community adopted a more conservative strategy, characterized by denser tissues, greater dry matter contents, lower carbon assimilation rates, higher leaf drought tolerance, narrower conduits, and larger Huber values, than trees from the valley. The functional coordination across organs was not detected in the sandy land forest, while the coupling of leaf economics and stem hydraulics occurred in the valley forest. Moreover, the trait network was looser in the sandy land forest compared to that in the valley forest. From sandy land to valley forests, the hub traits shifted from root diameter to stem vulnerability index and vessel diameter. Our results demonstrate that the coupled carbon and water related functional traits have played important roles in shaping the adaptive strategies of forest communities with distinct water regimes.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf056","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Species distribution is strongly driven by local resource availability, while the coordination and trade-offs among plant functional traits can reveal their adaptive strategies and community assembly in environments of different resource availability. Plant economics and hydraulic traits play fundamental roles in plant environmental adaptation; however, how these key functional traits contribute to the formation of different adaptive strategies to shape community assembly in different environments remains largely unknown. Here, we assess the role of coordinated carbon economics and hydraulic strategies in shaping tree adaptation in environments with two distinct water regimes. We analyzed 20 leaf, stem and root functional traits related to plant economics and hydraulics for 10 tree species from a dry sandy land community and 10 tree species from a neighboring wet valley community. We found an economics spectrum that is coordinated with hydraulic traits, conveying a trade-off between stress tolerance associated with high tissue construction cost and resource acquisition efficiency. Trees in the dry sandy land community adopted a more conservative strategy, characterized by denser tissues, greater dry matter contents, lower carbon assimilation rates, higher leaf drought tolerance, narrower conduits, and larger Huber values, than trees from the valley. The functional coordination across organs was not detected in the sandy land forest, while the coupling of leaf economics and stem hydraulics occurred in the valley forest. Moreover, the trait network was looser in the sandy land forest compared to that in the valley forest. From sandy land to valley forests, the hub traits shifted from root diameter to stem vulnerability index and vessel diameter. Our results demonstrate that the coupled carbon and water related functional traits have played important roles in shaping the adaptive strategies of forest communities with distinct water regimes.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.