Application of dihydropyrimidine dehydrogenase deficiency testing for the prevention of fluoropyrimidine toxicity: a real-world experience in a Southern Italy cancer center.
Gabriella Bianchino, Alessandra Perrone, Alessandro Sgambato, Italo Sarno, Filomena Nozza, Ludmila Carmen Omer, Massimo Ulivi, Antonio Traficante, Biagina Campisi, Sabino Russi, Giovanni Calice, Geppino Falco, Alfredo Tartarone
{"title":"Application of dihydropyrimidine dehydrogenase deficiency testing for the prevention of fluoropyrimidine toxicity: a real-world experience in a Southern Italy cancer center.","authors":"Gabriella Bianchino, Alessandra Perrone, Alessandro Sgambato, Italo Sarno, Filomena Nozza, Ludmila Carmen Omer, Massimo Ulivi, Antonio Traficante, Biagina Campisi, Sabino Russi, Giovanni Calice, Geppino Falco, Alfredo Tartarone","doi":"10.1080/1120009X.2025.2489837","DOIUrl":null,"url":null,"abstract":"<p><p>Fluoropyrimidines (FPs) are antineoplastic agents used for the treatment of various solid tumors, especially gastrointestinal cancers. Patients with variations in dihydropyrimidine dehydrogenase gene (<i>DPYD</i>), which can determine the partial or complete deficiency of the dihydropyrimidine dehydrogenase enzyme (DPD), are at an increased risk of developing severe and potentially life-threatening toxicity. Worldwide the introduction of pharmacogenetic testing into clinical practice has been a slow process and in our center the analysis of the <i>DPYD</i> gene has been adopted since April 2020. We evaluated the clinical application of routine DPYD screening and its ability to prevent early-onset of fluoropyrimidine-related toxicity in patients treated at the Oncology Reference Center of Basilicata (IRCCS-CROB), a recognized cancer centre in Southern Italy. From April 2020 to November 2022, 300 patients (male 137; female 163) diagnosed with various types of cancer were subjected to <i>DPYD</i> genotyping, before starting treatment with FPs. In accordance with the current European Medicines Agency (EMA) and the Italian Association of Medical Oncology (AIOM) guidelines patients were tested for four <i>DPYD</i> variants that are associated with reduced DPD activity. FPs dose adjustments in <i>DPYD</i> variant carriers were made following the previously mentioned guidelines. Three hundred patients underwent <i>DPYD</i> testing and thirteen (4.3%) patients were found to be heterozygous variant carriers; ten out of thirteen patients received FP dose reduction as indicated by the guidelines, one out of thirteen patients received alternative treatment, two of the thirteen patients received no treatment at all. The main toxicities observed in patients who received a <i>DPYD</i> genotype-based dose reduction were anemia, neutropenia, nausea and mucositis but events were primarily grade 1 or 2. Our experience confirms the technical feasibility and the usefulness of <i>DPYD</i> genotyping to reduce the risk of severe FPs toxicities.</p>","PeriodicalId":15338,"journal":{"name":"Journal of Chemotherapy","volume":" ","pages":"1-7"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1120009X.2025.2489837","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Fluoropyrimidines (FPs) are antineoplastic agents used for the treatment of various solid tumors, especially gastrointestinal cancers. Patients with variations in dihydropyrimidine dehydrogenase gene (DPYD), which can determine the partial or complete deficiency of the dihydropyrimidine dehydrogenase enzyme (DPD), are at an increased risk of developing severe and potentially life-threatening toxicity. Worldwide the introduction of pharmacogenetic testing into clinical practice has been a slow process and in our center the analysis of the DPYD gene has been adopted since April 2020. We evaluated the clinical application of routine DPYD screening and its ability to prevent early-onset of fluoropyrimidine-related toxicity in patients treated at the Oncology Reference Center of Basilicata (IRCCS-CROB), a recognized cancer centre in Southern Italy. From April 2020 to November 2022, 300 patients (male 137; female 163) diagnosed with various types of cancer were subjected to DPYD genotyping, before starting treatment with FPs. In accordance with the current European Medicines Agency (EMA) and the Italian Association of Medical Oncology (AIOM) guidelines patients were tested for four DPYD variants that are associated with reduced DPD activity. FPs dose adjustments in DPYD variant carriers were made following the previously mentioned guidelines. Three hundred patients underwent DPYD testing and thirteen (4.3%) patients were found to be heterozygous variant carriers; ten out of thirteen patients received FP dose reduction as indicated by the guidelines, one out of thirteen patients received alternative treatment, two of the thirteen patients received no treatment at all. The main toxicities observed in patients who received a DPYD genotype-based dose reduction were anemia, neutropenia, nausea and mucositis but events were primarily grade 1 or 2. Our experience confirms the technical feasibility and the usefulness of DPYD genotyping to reduce the risk of severe FPs toxicities.
期刊介绍:
The Journal of Chemotherapy is an international multidisciplinary journal committed to the rapid publication of high quality, peer-reviewed, original research on all aspects of antimicrobial and antitumor chemotherapy.
The Journal publishes original experimental and clinical research articles, state-of-the-art reviews, brief communications and letters on all aspects of chemotherapy, providing coverage of the pathogenesis, diagnosis, treatment, and control of infection, as well as the use of anticancer and immunomodulating drugs.
Specific areas of focus include, but are not limited to:
· Antibacterial, antiviral, antifungal, antiparasitic, and antiprotozoal agents;
· Anticancer classical and targeted chemotherapeutic agents, biological agents, hormonal drugs, immunomodulatory drugs, cell therapy and gene therapy;
· Pharmacokinetic and pharmacodynamic properties of antimicrobial and anticancer agents;
· The efficacy, safety and toxicology profiles of antimicrobial and anticancer drugs;
· Drug interactions in single or combined applications;
· Drug resistance to antimicrobial and anticancer drugs;
· Research and development of novel antimicrobial and anticancer drugs, including preclinical, translational and clinical research;
· Biomarkers of sensitivity and/or resistance for antimicrobial and anticancer drugs;
· Pharmacogenetics and pharmacogenomics;
· Precision medicine in infectious disease therapy and in cancer therapy;
· Pharmacoeconomics of antimicrobial and anticancer therapies and the implications to patients, health services, and the pharmaceutical industry.