DDSSnet: a fast strain demodulation approach for OFDR-based fiber shape reconstruction.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-04-07 DOI:10.1364/OE.550444
Aoyan Zhang, Weixuan Zhang, Linqi Cheng, Defeng Zou, Penglai Guo, Jiaqi Hu, Kunpeng Feng, Yihong Xiao, Jialong Li, Gina Jinna Chen, Hong Dang, Perry Ping Shum
{"title":"DDSSnet: a fast strain demodulation approach for OFDR-based fiber shape reconstruction.","authors":"Aoyan Zhang, Weixuan Zhang, Linqi Cheng, Defeng Zou, Penglai Guo, Jiaqi Hu, Kunpeng Feng, Yihong Xiao, Jialong Li, Gina Jinna Chen, Hong Dang, Perry Ping Shum","doi":"10.1364/OE.550444","DOIUrl":null,"url":null,"abstract":"<p><p>In optical fiber shape sensing technology, enhancing sensing accuracy while simultaneously achieving real-time shape reconstruction presents a notable challenge. This work presents a fast strain demodulation algorithm for the optical frequency domain reflectometry (OFDR) shape sensing system. The fast strain demodulation algorithm comprises deviation calculation and deviation denoising for shape-sensing convolutional neural network (DDSSnet). The initial operating wavelengths of the shape sensor can be effectively calibrated and the phase noise of residual nonlinear tuning in the system can also be compensated. Compared with the cross-correlation algorithm, the fast strain demodulation algorithm has increased the processing speed of demodulating axial strain distribution by 9.691 times and a shape-sensing result by 9.4 times. The shape of one cylinder and one configuration were then reconstructed using the rotation-minimum frame, resulting in maximum relative errors of 0.581% and 1.170%, respectively, and average relative errors of 0.204% and 0.380%, respectively. These errors are all slightly smaller than those obtained using the cross-correlation algorithm. The results from the shape-sensing experiments indicate that this method enables both faster and more accurate shape reconstruction, offering promising potential for practical applications.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 7","pages":"14640-14654"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.550444","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In optical fiber shape sensing technology, enhancing sensing accuracy while simultaneously achieving real-time shape reconstruction presents a notable challenge. This work presents a fast strain demodulation algorithm for the optical frequency domain reflectometry (OFDR) shape sensing system. The fast strain demodulation algorithm comprises deviation calculation and deviation denoising for shape-sensing convolutional neural network (DDSSnet). The initial operating wavelengths of the shape sensor can be effectively calibrated and the phase noise of residual nonlinear tuning in the system can also be compensated. Compared with the cross-correlation algorithm, the fast strain demodulation algorithm has increased the processing speed of demodulating axial strain distribution by 9.691 times and a shape-sensing result by 9.4 times. The shape of one cylinder and one configuration were then reconstructed using the rotation-minimum frame, resulting in maximum relative errors of 0.581% and 1.170%, respectively, and average relative errors of 0.204% and 0.380%, respectively. These errors are all slightly smaller than those obtained using the cross-correlation algorithm. The results from the shape-sensing experiments indicate that this method enables both faster and more accurate shape reconstruction, offering promising potential for practical applications.

DDSSnet:基于ofdr的光纤形状重建的快速应变解调方法。
在光纤形状传感技术中,如何在提高传感精度的同时实现形状的实时重建是一个值得关注的问题。本文提出了一种用于光学频域反射(OFDR)形状传感系统的快速应变解调算法。基于形状感知卷积神经网络(DDSSnet)的快速应变解调算法包括偏差计算和偏差去噪。该方法可以有效地校准形状传感器的初始工作波长,并对系统中残留的非线性调谐相位噪声进行补偿。与互相关算法相比,快速应变解调算法解调轴向应变分布的处理速度提高了9.691倍,形状感知结果提高了9.4倍。利用最小旋转框架重构一种圆柱形状和一种构型,最大相对误差分别为0.581%和1.170%,平均相对误差分别为0.204%和0.80%。这些误差都比使用互相关算法得到的误差略小。形状传感实验结果表明,该方法可以更快、更准确地重建形状,具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信