Improving ectomycorrhizal colonization and morpho-physiological traits of Pinus cooperi seedlings through organic nitrogen fertilization.

IF 3.8 2区 生物学 Q2 MYCOLOGY
Laura Elena Martínez-Nevárez, José A Sigala, José Ángel Prieto-Ruíz, José Leonardo García-Rodríguez, Mercedes Uscola, Magdalena Martínez-Reyes, Artemio Carrillo-Parra, Pedro Antonio Domínguez-Calleros
{"title":"Improving ectomycorrhizal colonization and morpho-physiological traits of Pinus cooperi seedlings through organic nitrogen fertilization.","authors":"Laura Elena Martínez-Nevárez, José A Sigala, José Ángel Prieto-Ruíz, José Leonardo García-Rodríguez, Mercedes Uscola, Magdalena Martínez-Reyes, Artemio Carrillo-Parra, Pedro Antonio Domínguez-Calleros","doi":"10.1007/s00572-025-01206-7","DOIUrl":null,"url":null,"abstract":"<p><p>Mycorrhizal associations play a crucial role in afforestation efforts, as they enhance the acquisition of nutrients and water, thereby supporting seedling establishment. However, the influence of nitrogen (N) forms in the soil, particularly the organic N, on the formation of mycorrhizal associations and their subsequent effects on seedling morpho-physiology remains poorly understood. In this study, we examine the mycorrhizal colonization, along with morpho-physiological and functional traits, in Pinus cooperi seedlings following fertilization with organic N in controlled nursery conditions. A factorial experiment was performed with Pinus cooperi C. E. Blanco seedlings using two N sources: organic N (amino acids) and inorganic N (NH<sub>4</sub>NO<sub>3</sub>) and two N doses: low and high (60 vs 200 mg N seedling<sup>-1</sup>). Seedlings were inoculated with a mixture of native fungi, but the phylogenetic analysis showed that Suillus placidus (Bonord.) Singer was the only species colonizing roots. Organic N promoted similar morphology and nutritional status as inorganic N, though at a low N rate, it improved root growth and mycorrhizal colonization. High N fertilization improved seedling growth and nutritional status but reduced mycorrhizal colonization. Mycorrhizal colonization improved needle P concentration, delayed plant desiccation, and reduced root cellular damage when seedlings were subjected to desiccation, though it decreased plant growth and needle N concentration. We conclude that organic N fertilization improves mycorrhization of P. cooperi with S. placidus, but the fertilization dose should be adjusted to meet species-specific requirements in order to optimize plant quality and promote afforestation success.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"28"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01206-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycorrhizal associations play a crucial role in afforestation efforts, as they enhance the acquisition of nutrients and water, thereby supporting seedling establishment. However, the influence of nitrogen (N) forms in the soil, particularly the organic N, on the formation of mycorrhizal associations and their subsequent effects on seedling morpho-physiology remains poorly understood. In this study, we examine the mycorrhizal colonization, along with morpho-physiological and functional traits, in Pinus cooperi seedlings following fertilization with organic N in controlled nursery conditions. A factorial experiment was performed with Pinus cooperi C. E. Blanco seedlings using two N sources: organic N (amino acids) and inorganic N (NH4NO3) and two N doses: low and high (60 vs 200 mg N seedling-1). Seedlings were inoculated with a mixture of native fungi, but the phylogenetic analysis showed that Suillus placidus (Bonord.) Singer was the only species colonizing roots. Organic N promoted similar morphology and nutritional status as inorganic N, though at a low N rate, it improved root growth and mycorrhizal colonization. High N fertilization improved seedling growth and nutritional status but reduced mycorrhizal colonization. Mycorrhizal colonization improved needle P concentration, delayed plant desiccation, and reduced root cellular damage when seedlings were subjected to desiccation, though it decreased plant growth and needle N concentration. We conclude that organic N fertilization improves mycorrhization of P. cooperi with S. placidus, but the fertilization dose should be adjusted to meet species-specific requirements in order to optimize plant quality and promote afforestation success.

有机氮肥对松木幼苗外生菌根定植及形态生理性状的影响
菌根结合力在造林工作中起着至关重要的作用,因为它们促进养分和水分的获取,从而支持幼苗的建立。然而,土壤中氮(N)形态的影响,特别是有机氮,对菌根结合体的形成及其随后对幼苗形态生理的影响仍然知之甚少。在本研究中,我们研究了在控制的苗圃条件下,施用有机氮后松柏幼苗的菌根定植以及形态生理和功能性状。采用有机氮(氨基酸)和无机氮(NH4NO3)两种氮源和低、高两种氮剂量(60 vs 200 mg N幼苗-1)对松苗进行了析因试验。幼苗接种了本地真菌的混合物,但系统发育分析表明,Suillus placidus (Bonord.)辛格是唯一在根上定居的物种。有机氮促进了与无机氮相似的形态和营养状况,但在低施氮量下,有机氮促进了根系生长和菌根定植。高施氮改善了幼苗生长和营养状况,但减少了菌根定植。菌根定殖虽然降低了植株生长和氮浓度,但提高了植株的氮根浓度,延缓了植株的干燥,减少了幼苗在干燥条件下的根细胞损伤。综上所述,施用有机氮可以促进松柏与松柏的菌根化,但为了优化植株质量,促进造林成功,应调整施肥剂量,以满足不同物种的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信