{"title":"Identification of Target Genes Using Innovative Screening Systems.","authors":"Keisuke Sugita, Morito Kurata","doi":"10.1111/pin.70019","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in cancer biology have been achieved by the identification of oncogenes and tumor suppressor genes through the remarkable progression of next-generation sequencing. New techniques, such as single-cell analysis, help uncover cancer progression and heterogeneity. Reverse genetic screenings, including methods like random mutagenesis via retroviruses, transposons, RNA interference, and CRISPR, are useful for exploring gene functions and their roles in cancer. Especially in random mutagenesis, CRISPR screening and its modifications have recently emerged as powerful tools due to their comprehensiveness and simplicity in inducing genetic mutations. Initially, CRISPR screening focused on analyzing biological phenotypes in a cell population. It has since evolved to incorporate advanced techniques, such as combining single-cell and spatial analyses. These developments enable the investigation of cell-cell and spatial interactions, which more closely mimic In Vivo microenvironments, offering deeper insights into complex biological processes. These approaches allow for the identification of essential genes involved in cancer survival, drug resistance, and tumorigenesis. Together, these technologies are advancing cancer research and therapeutic development.</p>","PeriodicalId":19806,"journal":{"name":"Pathology International","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pin.70019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in cancer biology have been achieved by the identification of oncogenes and tumor suppressor genes through the remarkable progression of next-generation sequencing. New techniques, such as single-cell analysis, help uncover cancer progression and heterogeneity. Reverse genetic screenings, including methods like random mutagenesis via retroviruses, transposons, RNA interference, and CRISPR, are useful for exploring gene functions and their roles in cancer. Especially in random mutagenesis, CRISPR screening and its modifications have recently emerged as powerful tools due to their comprehensiveness and simplicity in inducing genetic mutations. Initially, CRISPR screening focused on analyzing biological phenotypes in a cell population. It has since evolved to incorporate advanced techniques, such as combining single-cell and spatial analyses. These developments enable the investigation of cell-cell and spatial interactions, which more closely mimic In Vivo microenvironments, offering deeper insights into complex biological processes. These approaches allow for the identification of essential genes involved in cancer survival, drug resistance, and tumorigenesis. Together, these technologies are advancing cancer research and therapeutic development.
期刊介绍:
Pathology International is the official English journal of the Japanese Society of Pathology, publishing articles of excellence in human and experimental pathology. The Journal focuses on the morphological study of the disease process and/or mechanisms. For human pathology, morphological investigation receives priority but manuscripts describing the result of any ancillary methods (cellular, chemical, immunological and molecular biological) that complement the morphology are accepted. Manuscript on experimental pathology that approach pathologenesis or mechanisms of disease processes are expected to report on the data obtained from models using cellular, biochemical, molecular biological, animal, immunological or other methods in conjunction with morphology. Manuscripts that report data on laboratory medicine (clinical pathology) without significant morphological contribution are not accepted.