Haoyu Li, Pan Zhuang, Xiaohui Liu, Yin Li, Yang Ao, Yimei Tian, Wei Jia, Yu Zhang, Jingjing Jiao
{"title":"Marine N-3 Fatty Acids Mitigate Hyperglycemia in Prediabetes by Improving Muscular Glucose Transporter 4 Translocation and Glucose Homeostasis.","authors":"Haoyu Li, Pan Zhuang, Xiaohui Liu, Yin Li, Yang Ao, Yimei Tian, Wei Jia, Yu Zhang, Jingjing Jiao","doi":"10.34133/research.0683","DOIUrl":null,"url":null,"abstract":"<p><p>Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been proposed to benefit cardiometabolic health. However, the relationship between the intake of DHA and EPA and type 2 diabetes (T2D) risk remains equivocal, and the effects of DHA and EPA on skeletal muscle, the primary organ for glucose metabolism, merit further investigation. Here, we show that habitual fish oil supplementation was associated with a 9% lower T2D risk and significantly interacted with variants at GLUT4 in a prospective cohort of 48,358 people with prediabetes. Muscular metabolome analysis in the animal study revealed that DHA and EPA altered branched-chain amino acids, creatine, and glucose oxidation-related metabolites, concurrently with elevated muscular glycogen synthase and pyruvate dehydrogenase contents that promoted glucose disposal. Further myotube investigation revealed that DHA and EPA promoted muscular GLUT4 translocation by elevating Rab GTPases and target-SNARE expression. Together, DHA and EPA supplementation provides a promising approach for T2D prevention through targeting muscular glucose homeostasis, including enhancing GLUT4 translocation, glycogen synthesis, and aerobic glycolysis.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0683"},"PeriodicalIF":11.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0683","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been proposed to benefit cardiometabolic health. However, the relationship between the intake of DHA and EPA and type 2 diabetes (T2D) risk remains equivocal, and the effects of DHA and EPA on skeletal muscle, the primary organ for glucose metabolism, merit further investigation. Here, we show that habitual fish oil supplementation was associated with a 9% lower T2D risk and significantly interacted with variants at GLUT4 in a prospective cohort of 48,358 people with prediabetes. Muscular metabolome analysis in the animal study revealed that DHA and EPA altered branched-chain amino acids, creatine, and glucose oxidation-related metabolites, concurrently with elevated muscular glycogen synthase and pyruvate dehydrogenase contents that promoted glucose disposal. Further myotube investigation revealed that DHA and EPA promoted muscular GLUT4 translocation by elevating Rab GTPases and target-SNARE expression. Together, DHA and EPA supplementation provides a promising approach for T2D prevention through targeting muscular glucose homeostasis, including enhancing GLUT4 translocation, glycogen synthesis, and aerobic glycolysis.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.