Recombinant Adeno-Associated Virus Vector Mediated Gene Editing in Proliferating and Polarized Cultures of Human Airway Epithelial Cells.

IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Soo Yeun Park, Zehua Feng, Soon H Choi, Xiujuan Zhang, Yinghua Tang, Grace N Gasser, Donovan Richart, Feng Yuan, Jianming Qiu, John F Engelhardt, Ziying Yan
{"title":"Recombinant Adeno-Associated Virus Vector Mediated Gene Editing in Proliferating and Polarized Cultures of Human Airway Epithelial Cells.","authors":"Soo Yeun Park, Zehua Feng, Soon H Choi, Xiujuan Zhang, Yinghua Tang, Grace N Gasser, Donovan Richart, Feng Yuan, Jianming Qiu, John F Engelhardt, Ziying Yan","doi":"10.1089/hum.2024.260","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic fibrosis (CF) is caused by mutations in the <i>cystic fibrosis transmembrane conductance regulator</i> (<i>CFTR</i>) gene. While CRISPR-based <i>CFTR</i> editing approaches have shown proof-of-concept for functional rescue in primary airway basal cells, induced pluripotent stem cells, and organoid cultures derived from patients with CF, their efficacy remains suboptimal. Here, we developed the CuFi<sup>Cas9(Y66S)eGFP</sup> reporter system by integrating spCas9 and a non-fluorescent Y66S eGFP mutant into CuFi-8 cells, an immortalized human airway epithelial cell line derived from a patient with CF with homozygous F508del mutations. These cells retain the basal cell phenotype in proliferating cultures and can differentiate into polarized airway epithelium at an air-liquid interface (ALI), enabling both visualized detection of gene editing and electrophysiological assessment of <i>CFTR</i> functional restoration. Using this system, recombinant adeno-associated virus (rAAV)-mediated homology-directed repair (HDR) was evaluated in proliferating cultures. A correction rate of 13.5 ± 0.8% was achieved in a population where 82.3 ± 5.6% of cells were productively transduced by AAV.eGFP630g2-CMVmCh, an rAAV editing vector with an mCherry reporter. Dual-editing of F508del <i>CFTR</i> and Y66S <i>eGFP</i> was explored using AAV.HR-eGFP630-F508(g03) to deliver two templates and single guide RNAs. eGFP<sup>+</sup> (Y66S-corrected) cells and eGFP<sup>-</sup> (non-corrected) cells were sorted via fluorescence-activated cell sorting and differentiated at an ALI to assess the recovery of CFTR function. Despite a low F508 correction rate of 2.8%, ALI cultures derived from the eGFP<sup>-</sup> population exhibited 25.2% of the CFTR-specific transepithelial Cl<sup>-</sup> transport observed in CuFi-ALI cultures treated with CFTR modulators. Next-generation sequencing revealed frequent co-editing at both genomic loci, with sixfold higher F508 correction rate in the eGFP<sup>+</sup> cells than eGFP<sup>-</sup> cells. In both populations, non-homology end joining predominated over HDR. This reporter system provides a valuable platform for optimizing editing efficiencies in proliferating airway basal cells, particularly for development of strategies to enhance HDR through modulation of DNA repair pathways.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.260","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. While CRISPR-based CFTR editing approaches have shown proof-of-concept for functional rescue in primary airway basal cells, induced pluripotent stem cells, and organoid cultures derived from patients with CF, their efficacy remains suboptimal. Here, we developed the CuFiCas9(Y66S)eGFP reporter system by integrating spCas9 and a non-fluorescent Y66S eGFP mutant into CuFi-8 cells, an immortalized human airway epithelial cell line derived from a patient with CF with homozygous F508del mutations. These cells retain the basal cell phenotype in proliferating cultures and can differentiate into polarized airway epithelium at an air-liquid interface (ALI), enabling both visualized detection of gene editing and electrophysiological assessment of CFTR functional restoration. Using this system, recombinant adeno-associated virus (rAAV)-mediated homology-directed repair (HDR) was evaluated in proliferating cultures. A correction rate of 13.5 ± 0.8% was achieved in a population where 82.3 ± 5.6% of cells were productively transduced by AAV.eGFP630g2-CMVmCh, an rAAV editing vector with an mCherry reporter. Dual-editing of F508del CFTR and Y66S eGFP was explored using AAV.HR-eGFP630-F508(g03) to deliver two templates and single guide RNAs. eGFP+ (Y66S-corrected) cells and eGFP- (non-corrected) cells were sorted via fluorescence-activated cell sorting and differentiated at an ALI to assess the recovery of CFTR function. Despite a low F508 correction rate of 2.8%, ALI cultures derived from the eGFP- population exhibited 25.2% of the CFTR-specific transepithelial Cl- transport observed in CuFi-ALI cultures treated with CFTR modulators. Next-generation sequencing revealed frequent co-editing at both genomic loci, with sixfold higher F508 correction rate in the eGFP+ cells than eGFP- cells. In both populations, non-homology end joining predominated over HDR. This reporter system provides a valuable platform for optimizing editing efficiencies in proliferating airway basal cells, particularly for development of strategies to enhance HDR through modulation of DNA repair pathways.

重组腺相关病毒载体介导的人气道上皮细胞增殖和极化培养的基因编辑。
囊性纤维化(CF)是由囊性纤维化跨膜传导调节因子(CFTR)基因突变引起的。虽然基于crispr的CFTR编辑方法已经在原代气道基底细胞、诱导多能干细胞和源自CF患者的类器官培养物中显示出功能挽救的概念证明,但其疗效仍然不理想。在这里,我们通过将spCas9和非荧光Y66S eGFP突变体整合到CuFi-8细胞中,开发了CuFiCas9(Y66S)eGFP报告系统,CuFi-8细胞是一种永生的人气道上皮细胞系,来源于具有纯合子F508del突变的CF患者。这些细胞在增殖培养物中保持基底细胞表型,并能在气液界面(ALI)分化为极化气道上皮,从而实现基因编辑的可视化检测和CFTR功能恢复的电生理评估。利用该系统,在增殖培养中评估了重组腺相关病毒(rAAV)介导的同源定向修复(HDR)。校正率为13.5±0.8%,其中82.3±5.6%的细胞被AAV有效转导。eGFP630g2-CMVmCh,一种带有mCherry报告器的rAAV编辑载体。利用AAV.HR-eGFP630-F508(g03)对F508del CFTR和Y66S eGFP进行双编辑,传递两个模板和单个引导rna。通过荧光激活细胞分选对eGFP+ (y66s校正)细胞和eGFP-(未校正)细胞进行分类,并在ALI下进行分化,以评估CFTR功能的恢复情况。尽管F508校正率较低,为2.8%,但在CFTR调节剂处理的CuFi-ALI培养物中,eGFP-群体的ALI培养物显示出25.2%的CFTR特异性经上皮Cl-转运。新一代测序结果显示,在这两个基因组位点上,F508在eGFP+细胞中的校正率比eGFP-细胞高6倍。在两个种群中,非同源末端连接在HDR中占主导地位。该报告系统为优化增殖气道基底细胞的编辑效率提供了一个有价值的平台,特别是用于开发通过调节DNA修复途径增强HDR的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信