Sabir Khan, Muhammad Fazal Hameed, Imran Zafar, Rubina Bibi, Mohamed Mohany, Sadia Nazir, Mohammad Amjad Kamal, Muhammad Shafiq
{"title":"Synthesis, Characterization, and Pharmacological Evaluation of Zn<sub>4</sub>O(BDC)<sub>3</sub>: Anticancer, Antidiabetic, and Drug Delivery Potential.","authors":"Sabir Khan, Muhammad Fazal Hameed, Imran Zafar, Rubina Bibi, Mohamed Mohany, Sadia Nazir, Mohammad Amjad Kamal, Muhammad Shafiq","doi":"10.2174/0115734064362203250222050726","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study presents a comprehensive exploration of the biomedical potential of the synthesized metal-organic framework Zn<sub>4</sub>O(BDC)<sub>3</sub>, focusing on its applications in cancer and diabetes treatment and its advanced drug delivery capabilities.</p><p><strong>Methods: </strong>The structural and physicochemical properties of Zn<sub>4</sub>O(BDC)<sub>3</sub> were characterized using FTIR, TGA, <sup>1</sup>H NMR, PXRD, and elemental analysis, revealing its exceptional stability and coordination properties. Molecular docking, molecular dynamics simulations (100 ns), and MM-GBSA calculations were performed to assess binding affinities and stability.</p><p><strong>Results: </strong>The interactions of Zn<sub>4</sub>O(BDC)<sub>3</sub> with salmon sperm DNA (SSDNA) and bovine serum albumin (BSA) demonstrated significant anticancer potential, evidenced by binding constant values of 6.0 × 10<sup>6</sup>M<sup>-1</sup> and Gibbs free energy changes of -17.93 and -19.61 kcal/mol, respectively, highlighting its ability to suppress tumor cell proliferation. With doxorubicin (DOX) loading and reloading efficiencies of 88% and 87.5%, Zn<sub>4</sub>O(BDC)<sub>3</sub> exhibited superior drug delivery capabilities. The anti-diabetic potential was validated by the formation of human insulin (HI) hexamers with ΔG values of 0.8 ± 0.1 and a significant decrease in absorption intensity (5.8 to 0.05 at 250 nm). Molecular docking studies revealed moderate to high binding affinities (-10.0 to -5.3 kcal/mol) with biomolecular targets, supported by molecular dynamics simulations over 100 ns and MM-GBSA calculations indicating robust stability (ΔG = -33.31 kcal/mol).</p><p><strong>Conclusion: </strong>These <i>in-silico</i> and <i>in-vitro</i> analyses underscore the significant pharmacological promise of Zn<sub>4</sub>O(BDC)<sub>3</sub> as a multifunctional agent for anticancer, antidiabetic, and drug delivery applications.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064362203250222050726","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This study presents a comprehensive exploration of the biomedical potential of the synthesized metal-organic framework Zn4O(BDC)3, focusing on its applications in cancer and diabetes treatment and its advanced drug delivery capabilities.
Methods: The structural and physicochemical properties of Zn4O(BDC)3 were characterized using FTIR, TGA, 1H NMR, PXRD, and elemental analysis, revealing its exceptional stability and coordination properties. Molecular docking, molecular dynamics simulations (100 ns), and MM-GBSA calculations were performed to assess binding affinities and stability.
Results: The interactions of Zn4O(BDC)3 with salmon sperm DNA (SSDNA) and bovine serum albumin (BSA) demonstrated significant anticancer potential, evidenced by binding constant values of 6.0 × 106M-1 and Gibbs free energy changes of -17.93 and -19.61 kcal/mol, respectively, highlighting its ability to suppress tumor cell proliferation. With doxorubicin (DOX) loading and reloading efficiencies of 88% and 87.5%, Zn4O(BDC)3 exhibited superior drug delivery capabilities. The anti-diabetic potential was validated by the formation of human insulin (HI) hexamers with ΔG values of 0.8 ± 0.1 and a significant decrease in absorption intensity (5.8 to 0.05 at 250 nm). Molecular docking studies revealed moderate to high binding affinities (-10.0 to -5.3 kcal/mol) with biomolecular targets, supported by molecular dynamics simulations over 100 ns and MM-GBSA calculations indicating robust stability (ΔG = -33.31 kcal/mol).
Conclusion: These in-silico and in-vitro analyses underscore the significant pharmacological promise of Zn4O(BDC)3 as a multifunctional agent for anticancer, antidiabetic, and drug delivery applications.
期刊介绍:
Aims & Scope
Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.