{"title":"Advances in Gene Therapy for Sickle Cell Disease: From Preclinical Innovations to Clinical Implementation and Access Challenges.","authors":"Henna Butt, Mamatha Mandava, David Jacobsohn","doi":"10.1089/crispr.2024.0101","DOIUrl":null,"url":null,"abstract":"<p><p>Sickle cell disease (SCD) is a hereditary blood disorder caused by a specific mutation in the β-globin gene, leading to the production of hemoglobin S, which deforms red blood cells, causing occlusion in small blood vessels. This results in pain, anemia, organ damage, infections, and increased stroke risk. Treatment options, including disease-modifying therapies and curative hematopoietic stem cell transplants, have limited accessibility. Recently, autologous gene therapy has emerged as a promising curative option, particularly for SCD. Gene editing techniques such as CRISPR, base editing, and prime editing offer potential to correct this mutation. In this review, we discuss recent preclinical studies and clinical trials of gene and cell therapies, focusing on the progress of FDA-approved treatments like Lyfgenia and Casgevy. We also examine the many challenges, including accessibility, safety, and long-term efficacy, which continue to shape the future of SCD gene therapy.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"174-188"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2024.0101","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Sickle cell disease (SCD) is a hereditary blood disorder caused by a specific mutation in the β-globin gene, leading to the production of hemoglobin S, which deforms red blood cells, causing occlusion in small blood vessels. This results in pain, anemia, organ damage, infections, and increased stroke risk. Treatment options, including disease-modifying therapies and curative hematopoietic stem cell transplants, have limited accessibility. Recently, autologous gene therapy has emerged as a promising curative option, particularly for SCD. Gene editing techniques such as CRISPR, base editing, and prime editing offer potential to correct this mutation. In this review, we discuss recent preclinical studies and clinical trials of gene and cell therapies, focusing on the progress of FDA-approved treatments like Lyfgenia and Casgevy. We also examine the many challenges, including accessibility, safety, and long-term efficacy, which continue to shape the future of SCD gene therapy.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.