Anna Wróblewska-Kurdyk, Bożena Kordan, Jan Bocianowski, Katarzyna Stec, Beata Gabryś
{"title":"Effects of Apigenin and Luteolin on <i>Myzus persicae</i> (Hemiptera: Aphididae) Probing Behavior.","authors":"Anna Wróblewska-Kurdyk, Bożena Kordan, Jan Bocianowski, Katarzyna Stec, Beata Gabryś","doi":"10.3390/ijms26094452","DOIUrl":null,"url":null,"abstract":"<p><p>Apigenin and luteolin are products of the phenylpropanoid pathway, where apigenin serves as a substrate for the synthesis of luteolin. Apigenin and luteolin are highly bioactive flavones; therefore, in search of prospective biopesticides, the receptiveness of the polyphagous green peach aphid <i>Myzus persicae</i> (Sulzer) (Hemiptera: Aphididae) to apigenin and luteolin was studied. The flavones were applied as 0.1% ethanolic solutions to the host plant leaf surface, and aphid probing and feeding activities were monitored using the Electrical Penetration Graph (EPG) technique. The structural difference between apigenin and luteolin, which was the number of hydroxyl groups in the molecule, had an impact on the activity of these flavones. On apigenin-treated plants, the duration of the first probe was three times as short as on the control and five times as short as on the luteolin-treated plants; the duration of the time to the first ingestion phase within the successful probe was shorter than on the control and luteolin-treated plants; the mean duration of xylem sap ingestion bouts and the proportion of xylem phase in all probing activities were the highest; and the duration of salivation before phloem sap ingestion was the longest. Aphids' response to luteolin-treated plants was less distinct as compared to apigenin-treated plants.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12072685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26094452","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Apigenin and luteolin are products of the phenylpropanoid pathway, where apigenin serves as a substrate for the synthesis of luteolin. Apigenin and luteolin are highly bioactive flavones; therefore, in search of prospective biopesticides, the receptiveness of the polyphagous green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) to apigenin and luteolin was studied. The flavones were applied as 0.1% ethanolic solutions to the host plant leaf surface, and aphid probing and feeding activities were monitored using the Electrical Penetration Graph (EPG) technique. The structural difference between apigenin and luteolin, which was the number of hydroxyl groups in the molecule, had an impact on the activity of these flavones. On apigenin-treated plants, the duration of the first probe was three times as short as on the control and five times as short as on the luteolin-treated plants; the duration of the time to the first ingestion phase within the successful probe was shorter than on the control and luteolin-treated plants; the mean duration of xylem sap ingestion bouts and the proportion of xylem phase in all probing activities were the highest; and the duration of salivation before phloem sap ingestion was the longest. Aphids' response to luteolin-treated plants was less distinct as compared to apigenin-treated plants.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).