Eugenio Caradonna, Federico Abate, Elisabetta Schiano, Francesca Paparella, Fulvio Ferrara, Emilio Vanoli, Rossana Difruscolo, Vito Maria Goffredo, Bruno Amato, Carlo Setacci, Francesco Setacci, Ettore Novellino
{"title":"Trimethylamine-N-Oxide (TMAO) as a Rising-Star Metabolite: Implications for Human Health.","authors":"Eugenio Caradonna, Federico Abate, Elisabetta Schiano, Francesca Paparella, Fulvio Ferrara, Emilio Vanoli, Rossana Difruscolo, Vito Maria Goffredo, Bruno Amato, Carlo Setacci, Francesco Setacci, Ettore Novellino","doi":"10.3390/metabo15040220","DOIUrl":null,"url":null,"abstract":"<p><p>The intestinal microbiota, hosting trillions of microorganisms that inhabit the gastrointestinal tract, functions as a symbiotic organism that plays a crucial role in regulating health by producing biologically active molecules that can enter systemic circulation. Among them, trimethylamine-N-oxide (TMAO), an organic compound derived from dietary sources and microbial metabolism, has emerged as a critical biomarker linking diet, the gut microbiota, and the host metabolism to various pathological conditions. This comprehensive review highlights TMAO's biosynthesis, physiological functions, and clinical significance, focusing on its mechanistic contributions to cardiovascular and neurodegenerative diseases. Notably, TMAO-mediated pathways include endothelial dysfunction, inflammation via NLRP3 inflammasome activation, and cholesterol metabolism disruption, which collectively accelerate atherosclerosis and disease progression. Nonetheless, this work underscores the innovative potential of targeting TMAO through dietary, nutraceutical, and microbiota-modulating strategies to mitigate its pathological effects, marking a transformative approach in the prevention and management of TMAO-related disorders.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029716/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15040220","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intestinal microbiota, hosting trillions of microorganisms that inhabit the gastrointestinal tract, functions as a symbiotic organism that plays a crucial role in regulating health by producing biologically active molecules that can enter systemic circulation. Among them, trimethylamine-N-oxide (TMAO), an organic compound derived from dietary sources and microbial metabolism, has emerged as a critical biomarker linking diet, the gut microbiota, and the host metabolism to various pathological conditions. This comprehensive review highlights TMAO's biosynthesis, physiological functions, and clinical significance, focusing on its mechanistic contributions to cardiovascular and neurodegenerative diseases. Notably, TMAO-mediated pathways include endothelial dysfunction, inflammation via NLRP3 inflammasome activation, and cholesterol metabolism disruption, which collectively accelerate atherosclerosis and disease progression. Nonetheless, this work underscores the innovative potential of targeting TMAO through dietary, nutraceutical, and microbiota-modulating strategies to mitigate its pathological effects, marking a transformative approach in the prevention and management of TMAO-related disorders.
肠道微生物群作为一种共生生物,通过产生可进入体循环的生物活性分子,在调节健康方面发挥着至关重要的作用。其中,三甲胺- n -氧化物(TMAO)是一种来源于饮食和微生物代谢的有机化合物,已成为将饮食、肠道微生物群和宿主代谢与各种病理状况联系起来的关键生物标志物。本文综述了氧化三甲胺的生物合成、生理功能和临床意义,重点介绍了其在心血管和神经退行性疾病中的作用机制。值得注意的是,tmao介导的途径包括内皮功能障碍、NLRP3炎性体激活引起的炎症和胆固醇代谢中断,这些途径共同加速动脉粥样硬化和疾病进展。尽管如此,这项工作强调了通过饮食、营养和微生物调节策略靶向氧化三甲胺以减轻其病理作用的创新潜力,标志着预防和管理氧化三甲胺相关疾病的变革方法。
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.