Hanan Sharif, Reza Arabi Belaghi, Kiran Kumar Jagarlamudi, Sara Saellström, Liya Wang, Henrik Rönnberg, Staffan Eriksson
{"title":"A novel cross-validated machine learning based Alertix-Cancer Risk Index for early detection of canine malignancies.","authors":"Hanan Sharif, Reza Arabi Belaghi, Kiran Kumar Jagarlamudi, Sara Saellström, Liya Wang, Henrik Rönnberg, Staffan Eriksson","doi":"10.3389/fvets.2025.1570106","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The demand for non-invasive tumor biomarkers in veterinary field has recently grown significantly. Thymidine kinase 1 (TK1) is one of the non-invasive proliferation biomarkers that has been used for diagnosis and treatment monitoring of different canine malignancies. However, recent studies showed that the combination of TK1 with inflammatory biomarkers such as canine C-reactive protein (cCRP) can enhance the sensitivity for early tumor detection. Herein, we developed a machine learning (ML) model, i.e., Alertix-Cancer Risk Index (Alertix-CRI) which incorporates canine TK1 protein, CRP levels in conjunction with an age factor.</p><p><strong>Methods: </strong>A total of 287 serum samples were included in this study, consisting of 67 healthy dogs and dogs with different tumors (i.e., T-cell lymphoma <i>n</i> = 24, B-cell lymphoma <i>n</i> = 29, histiocytic sarcoma <i>n</i> = 47, hemangiosarcoma <i>n</i> = 26, osteosarcoma <i>n</i> = 26, mastocytoma <i>n</i> = 40, and mammary tumors <i>n</i> = 28). Serum TK1 protein levels were measured using TK1-ELISA and cCRP levels by a quantitative ELISA. The whole data set was divided as training (70%) and validation (30%). The Alertix-Cancer Risk Index (Alertix-CRI) is a generalized boosted regression model (GBM) with high accuracy in the training set and further validation was carried out with the same model.</p><p><strong>Results: </strong>Both the TK1-ELISA and cCRP levels were significantly higher in the tumor group compared to healthy controls (<i>p</i> < 0.0001). For overall tumors, the ROC curve analysis showed that TK1-ELISA has similar sensitivity as cCRP (54% vs. 51%) at a specificity of 95%. However, the Alertix-CRI for all malignancies showed an area under the curve (AUC) of 0.98, demonstrating very high discriminatory capacity, with a sensitivity of 90% and a specificity of 97%.</p><p><strong>Conclusion: </strong>These results demonstrate that the novel Alertix-CRI could be used as a decision-support tool helping clinicians to early differentiate dogs with malignant diseases from healthy. Additionally, these findings would facilitate the advancement of more precise and dependable diagnostic tools for early cancer detection and therapy monitoring within the realm of veterinary medicine.</p>","PeriodicalId":12772,"journal":{"name":"Frontiers in Veterinary Science","volume":"12 ","pages":"1570106"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fvets.2025.1570106","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The demand for non-invasive tumor biomarkers in veterinary field has recently grown significantly. Thymidine kinase 1 (TK1) is one of the non-invasive proliferation biomarkers that has been used for diagnosis and treatment monitoring of different canine malignancies. However, recent studies showed that the combination of TK1 with inflammatory biomarkers such as canine C-reactive protein (cCRP) can enhance the sensitivity for early tumor detection. Herein, we developed a machine learning (ML) model, i.e., Alertix-Cancer Risk Index (Alertix-CRI) which incorporates canine TK1 protein, CRP levels in conjunction with an age factor.
Methods: A total of 287 serum samples were included in this study, consisting of 67 healthy dogs and dogs with different tumors (i.e., T-cell lymphoma n = 24, B-cell lymphoma n = 29, histiocytic sarcoma n = 47, hemangiosarcoma n = 26, osteosarcoma n = 26, mastocytoma n = 40, and mammary tumors n = 28). Serum TK1 protein levels were measured using TK1-ELISA and cCRP levels by a quantitative ELISA. The whole data set was divided as training (70%) and validation (30%). The Alertix-Cancer Risk Index (Alertix-CRI) is a generalized boosted regression model (GBM) with high accuracy in the training set and further validation was carried out with the same model.
Results: Both the TK1-ELISA and cCRP levels were significantly higher in the tumor group compared to healthy controls (p < 0.0001). For overall tumors, the ROC curve analysis showed that TK1-ELISA has similar sensitivity as cCRP (54% vs. 51%) at a specificity of 95%. However, the Alertix-CRI for all malignancies showed an area under the curve (AUC) of 0.98, demonstrating very high discriminatory capacity, with a sensitivity of 90% and a specificity of 97%.
Conclusion: These results demonstrate that the novel Alertix-CRI could be used as a decision-support tool helping clinicians to early differentiate dogs with malignant diseases from healthy. Additionally, these findings would facilitate the advancement of more precise and dependable diagnostic tools for early cancer detection and therapy monitoring within the realm of veterinary medicine.
期刊介绍:
Frontiers in Veterinary Science is a global, peer-reviewed, Open Access journal that bridges animal and human health, brings a comparative approach to medical and surgical challenges, and advances innovative biotechnology and therapy.
Veterinary research today is interdisciplinary, collaborative, and socially relevant, transforming how we understand and investigate animal health and disease. Fundamental research in emerging infectious diseases, predictive genomics, stem cell therapy, and translational modelling is grounded within the integrative social context of public and environmental health, wildlife conservation, novel biomarkers, societal well-being, and cutting-edge clinical practice and specialization. Frontiers in Veterinary Science brings a 21st-century approach—networked, collaborative, and Open Access—to communicate this progress and innovation to both the specialist and to the wider audience of readers in the field.
Frontiers in Veterinary Science publishes articles on outstanding discoveries across a wide spectrum of translational, foundational, and clinical research. The journal''s mission is to bring all relevant veterinary sciences together on a single platform with the goal of improving animal and human health.