Pain Assessment in Osteoarthritis: Present Practices and Future Prospects Including the Use of Biomarkers and Wearable Technologies, and AI-Driven Personalized Medicine

IF 2.1 3区 医学 Q2 ORTHOPEDICS
Shujaa T. Khan, Nick Huffman, Xiaojuan Li, Anukriti Sharma, Carl S. Winalski, Eric T. Ricchetti, Kathleen Derwin, Suneel S. Apte, Daniel Rotroff, Carl Y. Saab, Nicolas S. Piuzzi
{"title":"Pain Assessment in Osteoarthritis: Present Practices and Future Prospects Including the Use of Biomarkers and Wearable Technologies, and AI-Driven Personalized Medicine","authors":"Shujaa T. Khan,&nbsp;Nick Huffman,&nbsp;Xiaojuan Li,&nbsp;Anukriti Sharma,&nbsp;Carl S. Winalski,&nbsp;Eric T. Ricchetti,&nbsp;Kathleen Derwin,&nbsp;Suneel S. Apte,&nbsp;Daniel Rotroff,&nbsp;Carl Y. Saab,&nbsp;Nicolas S. Piuzzi","doi":"10.1002/jor.26082","DOIUrl":null,"url":null,"abstract":"<p>Osteoarthritis (OA) is a highly prevalent chronic joint disorder affecting ~600 million individuals worldwide and is characterized by complex pain mechanisms that significantly impair patient quality of life. Challenges exist in accurately assessing and measuring pain in OA due to variations in pain perception among individuals and the heterogeneous nature of the disease. Conventional pain assessment methods, such as patient-reported outcome measures and clinical evaluations, often fail to fully capture the heterogeneity of pain experiences among individuals with OA. This review will summarize and evaluate current methods of pain assessment in OA and highlight future directions for standardized pain assessment. We discuss the role of animal models in enhancing our understanding of OA pain pathophysiology and highlight the necessity of translational research to advance pain assessment strategies. Key challenges explored include identifying phenotypes of pain susceptibility, integrating biomarkers into clinical practice, and adopting personalized pain management approaches through the incorporation of multi-modal data and multilevel analysis. We underscore the imperative for continued innovation in pain assessment and management to improve outcomes for patients with OA.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":"43 7","pages":"1217-1229"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jor.26082","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jor.26082","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is a highly prevalent chronic joint disorder affecting ~600 million individuals worldwide and is characterized by complex pain mechanisms that significantly impair patient quality of life. Challenges exist in accurately assessing and measuring pain in OA due to variations in pain perception among individuals and the heterogeneous nature of the disease. Conventional pain assessment methods, such as patient-reported outcome measures and clinical evaluations, often fail to fully capture the heterogeneity of pain experiences among individuals with OA. This review will summarize and evaluate current methods of pain assessment in OA and highlight future directions for standardized pain assessment. We discuss the role of animal models in enhancing our understanding of OA pain pathophysiology and highlight the necessity of translational research to advance pain assessment strategies. Key challenges explored include identifying phenotypes of pain susceptibility, integrating biomarkers into clinical practice, and adopting personalized pain management approaches through the incorporation of multi-modal data and multilevel analysis. We underscore the imperative for continued innovation in pain assessment and management to improve outcomes for patients with OA.

骨关节炎的疼痛评估:目前的实践和未来的前景,包括生物标志物和可穿戴技术的使用,以及人工智能驱动的个性化医疗。
骨关节炎(OA)是一种非常普遍的慢性关节疾病,影响全球约6亿人,其特征是复杂的疼痛机制,严重影响患者的生活质量。由于个体之间疼痛感知的差异和疾病的异质性,在准确评估和测量OA疼痛方面存在挑战。传统的疼痛评估方法,如患者报告的结果测量和临床评估,往往不能完全捕捉OA患者疼痛经历的异质性。本文将对OA疼痛评估的现有方法进行总结和评价,并强调标准化疼痛评估的未来方向。我们讨论了动物模型在增强我们对OA疼痛病理生理的理解中的作用,并强调了转化研究对推进疼痛评估策略的必要性。探索的主要挑战包括识别疼痛易感性的表型,将生物标志物整合到临床实践中,以及通过结合多模态数据和多层次分析采用个性化的疼痛管理方法。我们强调持续创新疼痛评估和管理的必要性,以改善OA患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Orthopaedic Research®
Journal of Orthopaedic Research® 医学-整形外科
CiteScore
6.10
自引率
3.60%
发文量
261
审稿时长
3-6 weeks
期刊介绍: The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信