{"title":"Neurotrophic factor alpha 1 gene therapy in Alzheimer's disease: scope and advancements.","authors":"Ammara Shaikh, Fairus Ahmad, Seong Lin Teoh, Jaya Kumar, Mohamad Fairuz Yahaya","doi":"10.3389/fnmol.2025.1518868","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the leading cause of dementia, accounting for 60-80% of all cases globally. Hallmark pathologies of AD include the accumulation of amyloid <i>β</i> peptide and phosphorylated tau, leading to neuronal circuit dysfunction, defective axonal transport, and neurotransmitter system (NTS) abnormalities. Disruptions in acetylcholine, GABA, dopamine, serotonin, and glutamate levels, as well as the loss of cholinergic, GABAergic, and monoaminergic neurons, contribute to the progression of AD. Additionally, neurotrophic factors like brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are significantly reduced in AD, impacting neuronal health and synaptic integrity. This review highlights the emerging role of neurotrophic factor alpha 1 (NF-α1), also known as carboxypeptidase E, in AD. NF-α1 shows neuroprotective and neurogenesis-promoting properties, offering potential for therapeutic interventions. The review compares NF-α1 gene therapy with other neurotrophin-based treatments, providing insights into its efficacy in AD management.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"18 ","pages":"1518868"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2025.1518868","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, accounting for 60-80% of all cases globally. Hallmark pathologies of AD include the accumulation of amyloid β peptide and phosphorylated tau, leading to neuronal circuit dysfunction, defective axonal transport, and neurotransmitter system (NTS) abnormalities. Disruptions in acetylcholine, GABA, dopamine, serotonin, and glutamate levels, as well as the loss of cholinergic, GABAergic, and monoaminergic neurons, contribute to the progression of AD. Additionally, neurotrophic factors like brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are significantly reduced in AD, impacting neuronal health and synaptic integrity. This review highlights the emerging role of neurotrophic factor alpha 1 (NF-α1), also known as carboxypeptidase E, in AD. NF-α1 shows neuroprotective and neurogenesis-promoting properties, offering potential for therapeutic interventions. The review compares NF-α1 gene therapy with other neurotrophin-based treatments, providing insights into its efficacy in AD management.
期刊介绍:
Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.