An Automated AI Framework for Quantitative Measurement of Mammalian Behavior.

IF 3.5 1区 生物学 Q1 ZOOLOGY
Jia Liu, Tao Liu, Zhengfeng Hu, Fan Wu, Wenjie Guo, Haojie Wu, Zhan Wang, Yiyi Men, Shuang Yin, Paul A Garber, Derek Dunn, Colin A Chapman, Gang He, Felix Guo, Ruliang Pan, Tongzuo Zhang, Yang Zhao, Pengfei Xu, Baoguo Li, Songtao Guo
{"title":"An Automated AI Framework for Quantitative Measurement of Mammalian Behavior.","authors":"Jia Liu, Tao Liu, Zhengfeng Hu, Fan Wu, Wenjie Guo, Haojie Wu, Zhan Wang, Yiyi Men, Shuang Yin, Paul A Garber, Derek Dunn, Colin A Chapman, Gang He, Felix Guo, Ruliang Pan, Tongzuo Zhang, Yang Zhao, Pengfei Xu, Baoguo Li, Songtao Guo","doi":"10.1111/1749-4877.12985","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the large amount of video data captured during ethological studies of wild mammals, there is no widely accepted method available to automatically and quantitatively measure and analyze animal behavior. We developed a framework using facial recognition and deep learning to automatically track, measure, and quantify the behavior of single or multiple individuals from 10 distinct mammalian taxa, including three species of primates, three species of bovids, three species of carnivores, and one species of equid. We used spatiotemporal information based on animal skeleton models to recognize a set of distinct behaviors such as walking, feeding, grooming, and resting, and achieved an accuracy ranging from 0.82 to 0.96. Accuracies of validation videos ranged from 0.80 to 0.99. Our study offers an innovative analytical platform for the rapid and accurate evaluation of animal behavior in both captive and field settings.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12985","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the large amount of video data captured during ethological studies of wild mammals, there is no widely accepted method available to automatically and quantitatively measure and analyze animal behavior. We developed a framework using facial recognition and deep learning to automatically track, measure, and quantify the behavior of single or multiple individuals from 10 distinct mammalian taxa, including three species of primates, three species of bovids, three species of carnivores, and one species of equid. We used spatiotemporal information based on animal skeleton models to recognize a set of distinct behaviors such as walking, feeding, grooming, and resting, and achieved an accuracy ranging from 0.82 to 0.96. Accuracies of validation videos ranged from 0.80 to 0.99. Our study offers an innovative analytical platform for the rapid and accurate evaluation of animal behavior in both captive and field settings.

用于哺乳动物行为定量测量的自动AI框架。
尽管在野生哺乳动物行为学研究中捕获了大量的视频数据,但目前还没有一种被广泛接受的方法可以自动定量地测量和分析动物的行为。我们开发了一个使用面部识别和深度学习的框架来自动跟踪、测量和量化来自10个不同哺乳动物分类群的单个或多个个体的行为,包括3种灵长类动物、3种牛科动物、3种食肉动物和1种马科动物。我们利用基于动物骨骼模型的时空信息来识别动物行走、进食、梳理和休息等一系列不同的行为,准确率在0.82 ~ 0.96之间。验证视频的准确度范围为0.80 ~ 0.99。我们的研究为快速准确地评估圈养和野外环境下的动物行为提供了一个创新的分析平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
12.10%
发文量
81
审稿时长
>12 weeks
期刊介绍: The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society. Integrative topics of greatest interest to INZ include: (1) Animals & climate change (2) Animals & pollution (3) Animals & infectious diseases (4) Animals & biological invasions (5) Animal-plant interactions (6) Zoogeography & paleontology (7) Neurons, genes & behavior (8) Molecular ecology & evolution (9) Physiological adaptations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信