Linglan Xu, Nan Xie, Yiqing Liu, Hongmei Tang, Tian Li, Jiaofeng Peng, Ranhui Li
{"title":"Development of a Novel Multi-Epitope Vaccine Against Streptococcus anginosus Infection via Reverse Vaccinology Approach.","authors":"Linglan Xu, Nan Xie, Yiqing Liu, Hongmei Tang, Tian Li, Jiaofeng Peng, Ranhui Li","doi":"10.1111/imm.13936","DOIUrl":null,"url":null,"abstract":"<p><p>Streptococcus anginosus is an opportunistic pathogen known for its capability to cause a broad range of infections, posing a significant and growing global health concern. Alongside enhancing diagnostic capabilities and bolstering public health initiatives, developing a safe and effective vaccine represents a promising strategy to tackle this health challenge. In this paper, we employed an array of bioinformatics tools to engineer a subunit vaccine that exhibits high immunogenicity against S. anginosus. After constructing the multi-epitope vaccine, we subsequently predicted its secondary and tertiary protein structures. After refining and validating the modelled structure, we utilised advanced computational approaches, including molecular docking and dynamic simulations, to evaluate the binding affinity, compatibility, and stability of the vaccine-adjuvant complexes. Eventually, in silico cloning was conducted to optimise protein expression and production. The multi-epitope subunit vaccine we developed showed properties in antigenicity and immunity theoretically. The computational study revealed that this vaccine demonstrates significant efficacy against S. anginosus.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/imm.13936","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Streptococcus anginosus is an opportunistic pathogen known for its capability to cause a broad range of infections, posing a significant and growing global health concern. Alongside enhancing diagnostic capabilities and bolstering public health initiatives, developing a safe and effective vaccine represents a promising strategy to tackle this health challenge. In this paper, we employed an array of bioinformatics tools to engineer a subunit vaccine that exhibits high immunogenicity against S. anginosus. After constructing the multi-epitope vaccine, we subsequently predicted its secondary and tertiary protein structures. After refining and validating the modelled structure, we utilised advanced computational approaches, including molecular docking and dynamic simulations, to evaluate the binding affinity, compatibility, and stability of the vaccine-adjuvant complexes. Eventually, in silico cloning was conducted to optimise protein expression and production. The multi-epitope subunit vaccine we developed showed properties in antigenicity and immunity theoretically. The computational study revealed that this vaccine demonstrates significant efficacy against S. anginosus.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.