External validation of a prediction model for bleeding events in anticoagulated cancer patients with venous thromboembolism (PredictAI).

IF 2.5 3区 医学 Q2 ONCOLOGY
Clinical & Translational Oncology Pub Date : 2025-10-01 Epub Date: 2025-04-26 DOI:10.1007/s12094-025-03890-5
María Carmen Viñuela-Benéitez, Claudia Iglesias Pérez, Laura Ortega Morán, Ignacio García Escobar, Diego Cacho Lavín, Rut Porta I Balanyà, Silvia García Adrián, Marta Carmona Campos, Gretel Benítez López, José Antonio Santiago Crespo, Miriam Lobo de Mena, Javier Pérez Altozano, Enrique Gallardo Díaz, Julia Tejerina Peces, Pilar Ochoa Rivas, María José Ortiz Morales, Victoria Eugenia Castellón Rubio, Carmen Díez Pedroche, María Rosales Sueiro, Felipe Gonçalves, Manuel Sánchez-Cánovas, Miguel Ángel Ruiz, José Muñoz-Langa, Pedro Pérez Segura, Eva Martínez de Castro, Alberto Carmona-Bayonas, Paula Jiménez-Fonseca, Andrés Jesús Muñoz Martín
{"title":"External validation of a prediction model for bleeding events in anticoagulated cancer patients with venous thromboembolism (PredictAI).","authors":"María Carmen Viñuela-Benéitez, Claudia Iglesias Pérez, Laura Ortega Morán, Ignacio García Escobar, Diego Cacho Lavín, Rut Porta I Balanyà, Silvia García Adrián, Marta Carmona Campos, Gretel Benítez López, José Antonio Santiago Crespo, Miriam Lobo de Mena, Javier Pérez Altozano, Enrique Gallardo Díaz, Julia Tejerina Peces, Pilar Ochoa Rivas, María José Ortiz Morales, Victoria Eugenia Castellón Rubio, Carmen Díez Pedroche, María Rosales Sueiro, Felipe Gonçalves, Manuel Sánchez-Cánovas, Miguel Ángel Ruiz, José Muñoz-Langa, Pedro Pérez Segura, Eva Martínez de Castro, Alberto Carmona-Bayonas, Paula Jiménez-Fonseca, Andrés Jesús Muñoz Martín","doi":"10.1007/s12094-025-03890-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of this study was to validate the PredictAI models for predicting major bleeding (MB) in patients with active cancer and venous thromboembolism (VTE) with anticoagulant (ACO) therapy, within 6 months after primary VTE, using an independent cohort of patients from the TESEO database.</p><p><strong>Methods: </strong>This study conducted an external validation of the PredictAI models using the international, prospective TESEO registry from July 2018 until October 2021. Data from 40 Spanish and Portuguese hospitals recruiting consecutive cases of cancer-associated thrombosis under anticoagulant treatment and without missing values regarding the model outcome or predictors were used. Patients with baseline MB or unknown MB status during follow-up were excluded for the validation analysis. Logistic regression (LR), decision tree (DT), and random forest (RF) approaches were used to validate the models.</p><p><strong>Results: </strong>Included patients from the TESEO cohort (2179 patients) had similar key demographics and clinical characteristics to the PredictAI cohort (21,227 patients). During the 6-month follow-up period, 10.9% (n = 2314) and 5.9% (n = 129) of patients experienced at least one MB event in the PredictAI and TESEO cohorts, respectively. Hemoglobin, metastasis, age, platelets, leukocytes, and serum creatinine were described as predictors for MB in PredictAI; the external validation results in TESEO showed statistical significance by LR and RF approaches, with ROC-AUC values of 0.59 and 0.56, respectively (both p < 0.05).</p><p><strong>Conclusion: </strong>PredictAI models for predicting MB in anticoagulant-treated cancer patients within the first 6 months following VTE diagnosis have been externally validated. These models may be considered as a tool to guide objective decisions regarding the indication or extension of anticoagulant therapy in this population.</p>","PeriodicalId":50685,"journal":{"name":"Clinical & Translational Oncology","volume":" ","pages":"4031-4039"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12094-025-03890-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The objective of this study was to validate the PredictAI models for predicting major bleeding (MB) in patients with active cancer and venous thromboembolism (VTE) with anticoagulant (ACO) therapy, within 6 months after primary VTE, using an independent cohort of patients from the TESEO database.

Methods: This study conducted an external validation of the PredictAI models using the international, prospective TESEO registry from July 2018 until October 2021. Data from 40 Spanish and Portuguese hospitals recruiting consecutive cases of cancer-associated thrombosis under anticoagulant treatment and without missing values regarding the model outcome or predictors were used. Patients with baseline MB or unknown MB status during follow-up were excluded for the validation analysis. Logistic regression (LR), decision tree (DT), and random forest (RF) approaches were used to validate the models.

Results: Included patients from the TESEO cohort (2179 patients) had similar key demographics and clinical characteristics to the PredictAI cohort (21,227 patients). During the 6-month follow-up period, 10.9% (n = 2314) and 5.9% (n = 129) of patients experienced at least one MB event in the PredictAI and TESEO cohorts, respectively. Hemoglobin, metastasis, age, platelets, leukocytes, and serum creatinine were described as predictors for MB in PredictAI; the external validation results in TESEO showed statistical significance by LR and RF approaches, with ROC-AUC values of 0.59 and 0.56, respectively (both p < 0.05).

Conclusion: PredictAI models for predicting MB in anticoagulant-treated cancer patients within the first 6 months following VTE diagnosis have been externally validated. These models may be considered as a tool to guide objective decisions regarding the indication or extension of anticoagulant therapy in this population.

Abstract Image

抗凝癌症合并静脉血栓栓塞患者出血事件预测模型(PredictAI)的外部验证。
目的:本研究的目的是验证PredictAI模型对原发静脉血栓栓塞(VTE)患者抗凝治疗(ACO)后6个月内活动性癌症和静脉血栓栓塞(VTE)患者大出血(MB)的预测,使用来自TESEO数据库的独立患者队列。方法:本研究使用2018年7月至2021年10月的国际前瞻性TESEO注册表对PredictAI模型进行了外部验证。来自40家西班牙和葡萄牙医院的数据招募了抗凝治疗下癌症相关血栓的连续病例,并且模型结果或预测因子没有缺失值。在随访期间,基线MB或未知MB状态的患者被排除在验证分析之外。采用逻辑回归(LR)、决策树(DT)和随机森林(RF)方法对模型进行验证。结果:来自TESEO队列的患者(2179例)与PredictAI队列(21227例)具有相似的关键人口统计学和临床特征。在6个月的随访期间,10.9% (n = 2314)和5.9% (n = 129)的患者分别在PredictAI和TESEO队列中经历了至少一次MB事件。在PredictAI中,血红蛋白、转移、年龄、血小板、白细胞和血清肌酐被描述为MB的预测因子;采用LR和RF方法进行TESEO的外部验证结果具有统计学意义,ROC-AUC值分别为0.59和0.56 (p)。结论:预测VTE诊断后前6个月内抗凝治疗的癌症患者MB的PredictAI模型已得到外部验证。这些模型可以被认为是一个工具,以指导客观决策有关抗凝治疗的适应症或延长在这一人群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
240
审稿时长
1 months
期刊介绍: Clinical and Translational Oncology is an international journal devoted to fostering interaction between experimental and clinical oncology. It covers all aspects of research on cancer, from the more basic discoveries dealing with both cell and molecular biology of tumour cells, to the most advanced clinical assays of conventional and new drugs. In addition, the journal has a strong commitment to facilitating the transfer of knowledge from the basic laboratory to the clinical practice, with the publication of educational series devoted to closing the gap between molecular and clinical oncologists. Molecular biology of tumours, identification of new targets for cancer therapy, and new technologies for research and treatment of cancer are the major themes covered by the educational series. Full research articles on a broad spectrum of subjects, including the molecular and cellular bases of disease, aetiology, pathophysiology, pathology, epidemiology, clinical features, and the diagnosis, prognosis and treatment of cancer, will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信