Claudio Counoupas, Elizabeth Chan, Paco Pino, Joshua Armitano, Matt D Johansen, Lachlan J Smith, Caroline L Ashley, Eva Estapé, Jean Troyon, Sibel Alca, Stefan Miemczyk, Nicole G Hansbro, Gabriella Scandurra, Warwick J Britton, Thomas Courant, Patrice M Dubois, Nicolas Collin, V Krishna Mohan, Philip M Hansbro, Maria J Wurm, Florian M Wurm, Megan Steain, James A Triccas
{"title":"An adjuvanted chimeric spike antigen boosts lung-resident memory T-cells and induces pan-sarbecovirus protective immunity.","authors":"Claudio Counoupas, Elizabeth Chan, Paco Pino, Joshua Armitano, Matt D Johansen, Lachlan J Smith, Caroline L Ashley, Eva Estapé, Jean Troyon, Sibel Alca, Stefan Miemczyk, Nicole G Hansbro, Gabriella Scandurra, Warwick J Britton, Thomas Courant, Patrice M Dubois, Nicolas Collin, V Krishna Mohan, Philip M Hansbro, Maria J Wurm, Florian M Wurm, Megan Steain, James A Triccas","doi":"10.1038/s41541-025-01144-7","DOIUrl":null,"url":null,"abstract":"<p><p>Next-generation vaccines are essential to address the evolving nature of SARS-CoV-2 and to protect against emerging pandemic threats from other coronaviruses. These vaccines should elicit broad protection, provide long-lasting immunity and ensure equitable access for all populations. In this study, we developed a panel of chimeric, full-length spike antigens incorporating mutations from previous, circulating and predicted SARS-CoV-2 variants. The lead candidate (CoVEXS5) was produced through a high-yield production process in stable CHO cells achieving >95% purity, demonstrated long-term stability and elicited broadly cross-reactive neutralising antibodies when delivered to mice in a squalene emulsion adjuvant (Sepivac SWE™). In both mice and hamsters, CoVEXS5 immunisation reduced clinical disease signs, lung inflammation and organ viral titres after SARS-CoV-2 infection, including following challenge with the highly immunoevasive Omicron XBB.1.5 subvariant. In mice previously primed with a licenced mRNA vaccine (Comirnaty XBB.1.5, termed mRNA-XBB), CoVEXS5 boosting significantly increased neutralising antibody (nAb) levels against viruses from three sarbecoviruses clades. Boosting with CoVEXS5 via systemic delivery elicited CD4+ lung-resident memory T cells, typically associated with mucosal immunisation strategies, which were not detected following mRNA-XBB boosting. Vaccination of hamsters with CoVEXS5 conferred significant protection against weight loss after SARS-CoV-1 challenge, compared to mRNA-XBB immunisation, that correlated with anti-SARS-CoV-1 nAbs in the sera of vaccinated animals. These findings highlight the potential of a chimeric spike antigen, formulated in an open-access adjuvant, as a next-generation vaccine candidate to enhance cross-protection against emerging sarbecoviruses in vaccinated populations globally.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"10 1","pages":"89"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-025-01144-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Next-generation vaccines are essential to address the evolving nature of SARS-CoV-2 and to protect against emerging pandemic threats from other coronaviruses. These vaccines should elicit broad protection, provide long-lasting immunity and ensure equitable access for all populations. In this study, we developed a panel of chimeric, full-length spike antigens incorporating mutations from previous, circulating and predicted SARS-CoV-2 variants. The lead candidate (CoVEXS5) was produced through a high-yield production process in stable CHO cells achieving >95% purity, demonstrated long-term stability and elicited broadly cross-reactive neutralising antibodies when delivered to mice in a squalene emulsion adjuvant (Sepivac SWE™). In both mice and hamsters, CoVEXS5 immunisation reduced clinical disease signs, lung inflammation and organ viral titres after SARS-CoV-2 infection, including following challenge with the highly immunoevasive Omicron XBB.1.5 subvariant. In mice previously primed with a licenced mRNA vaccine (Comirnaty XBB.1.5, termed mRNA-XBB), CoVEXS5 boosting significantly increased neutralising antibody (nAb) levels against viruses from three sarbecoviruses clades. Boosting with CoVEXS5 via systemic delivery elicited CD4+ lung-resident memory T cells, typically associated with mucosal immunisation strategies, which were not detected following mRNA-XBB boosting. Vaccination of hamsters with CoVEXS5 conferred significant protection against weight loss after SARS-CoV-1 challenge, compared to mRNA-XBB immunisation, that correlated with anti-SARS-CoV-1 nAbs in the sera of vaccinated animals. These findings highlight the potential of a chimeric spike antigen, formulated in an open-access adjuvant, as a next-generation vaccine candidate to enhance cross-protection against emerging sarbecoviruses in vaccinated populations globally.
NPJ VaccinesImmunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍:
Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.