{"title":"Optimizing energetics of lateral undulatory locomotion: unveiling morphological adaptations in different environments.","authors":"Basit Yaqoob, Maurizio Porfiri, Nicola M Pugno","doi":"10.1098/rsif.2024.0440","DOIUrl":null,"url":null,"abstract":"<p><p>Ongoing efforts seek to unravel theories that can make simple, quantitative and reasonably accurate predictions of the morphological adaptive changes that arise with the size variation. Yet, relatively scant attention has been directed towards lateral undulatory locomotion. In the current study, we explore: (i) the constraints imposed by the variation of length and mass in viscous and dry friction environments on the cost of transport (COT) of lateral undulatory locomotion and (ii) the role of the body, environment and input oscillations in such an intricate interplay. In a dry friction environment, minimum COT correlates with stiffer and longer bodies, higher frictional anisotropy and angular amplitudes greater than approximately 10<sup>o</sup>. Conversely, a viscous environment favours flexible long bodies, higher frictional anisotropy and angular amplitudes lower than approximately 30<sup>o</sup>. In both environments, optimizing mass and maintaining low angular frequencies minimizes COT. Our conclusions are applicable only in the low-Reynolds-number regime, and it is essential to consider the interdependence of parameters when applying the generalized results. Our findings highlight musculoskeletal and biomechanical adaptations that animals may use to mitigate the consequences of size variation and to meet the energetic demands of lateral undulatory locomotion. These insights enhance foundational biomechanics knowledge while offering practical applications in robotics and ecology.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 225","pages":"20240440"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0440","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ongoing efforts seek to unravel theories that can make simple, quantitative and reasonably accurate predictions of the morphological adaptive changes that arise with the size variation. Yet, relatively scant attention has been directed towards lateral undulatory locomotion. In the current study, we explore: (i) the constraints imposed by the variation of length and mass in viscous and dry friction environments on the cost of transport (COT) of lateral undulatory locomotion and (ii) the role of the body, environment and input oscillations in such an intricate interplay. In a dry friction environment, minimum COT correlates with stiffer and longer bodies, higher frictional anisotropy and angular amplitudes greater than approximately 10o. Conversely, a viscous environment favours flexible long bodies, higher frictional anisotropy and angular amplitudes lower than approximately 30o. In both environments, optimizing mass and maintaining low angular frequencies minimizes COT. Our conclusions are applicable only in the low-Reynolds-number regime, and it is essential to consider the interdependence of parameters when applying the generalized results. Our findings highlight musculoskeletal and biomechanical adaptations that animals may use to mitigate the consequences of size variation and to meet the energetic demands of lateral undulatory locomotion. These insights enhance foundational biomechanics knowledge while offering practical applications in robotics and ecology.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.