Oleoylethanolamine precursor triggers lipolysis during Time-Restricted Intermittent Fasting and promotes longevity and healthy aging of Caenorhabditis elegans.

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Thondimuthu Vinitha, Rajasekharan Sharika, Krishnaswamy Balamurugan
{"title":"Oleoylethanolamine precursor triggers lipolysis during Time-Restricted Intermittent Fasting and promotes longevity and healthy aging of Caenorhabditis elegans.","authors":"Thondimuthu Vinitha, Rajasekharan Sharika, Krishnaswamy Balamurugan","doi":"10.1007/s13105-025-01087-6","DOIUrl":null,"url":null,"abstract":"<p><p>Intermittent fasting (IF), Time-Restricted Intermittent Fasting (TRIF), and fasting-mimicking diets have gained popularity among weight loss programs. The body efficiently utilizes its energy reserves to activate metabolic processes in response to food intake. Modifying food regimens can alter/extend life span and promote healthy aging by activating specific metabolic processes. However, changes in general lipid metabolism, especially the alteration in N-acylethanolamide (NAE) regulation and their role in promoting lipolysis and extending life span during TRIF, are still inadequately explored. To bridge the knowledge gap, this study focuses on enhancing Oleoylethanolamine (OEA), a precursor molecule that instigates satiety, promotes lipolysis and extends the life span of model system, Caenorhabditis elegans. TRIF regimen in C. elegans induces OEA, which in turn lead to satiety followed by lipolysis and ATP synthesis. Lipolysis is stimulated by the increase in Adipose Tissue Triglyceride Lipase-1 (ATGL-1) activity that results from the enrichment in OEA precursor. In addition, the TRIF regimen induces oxidative stress resistance in C. elegans. Subsequently, this promotes longevity and slow aging in C. elegans by altering the insulin/ insulin-like growth factor signaling (IIS) pathway. The present study suggested the beneficial effects of time-restricted fasting in the eukaryotic model nematodes through the activation of lipid metabolism that involves enhanced production of OEA precursors which promotes lipolysis. In addition, the data revealed that the increased ATP production resulted in oxidative stress tolerance that promoted longevity and slow aging processes.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-025-01087-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intermittent fasting (IF), Time-Restricted Intermittent Fasting (TRIF), and fasting-mimicking diets have gained popularity among weight loss programs. The body efficiently utilizes its energy reserves to activate metabolic processes in response to food intake. Modifying food regimens can alter/extend life span and promote healthy aging by activating specific metabolic processes. However, changes in general lipid metabolism, especially the alteration in N-acylethanolamide (NAE) regulation and their role in promoting lipolysis and extending life span during TRIF, are still inadequately explored. To bridge the knowledge gap, this study focuses on enhancing Oleoylethanolamine (OEA), a precursor molecule that instigates satiety, promotes lipolysis and extends the life span of model system, Caenorhabditis elegans. TRIF regimen in C. elegans induces OEA, which in turn lead to satiety followed by lipolysis and ATP synthesis. Lipolysis is stimulated by the increase in Adipose Tissue Triglyceride Lipase-1 (ATGL-1) activity that results from the enrichment in OEA precursor. In addition, the TRIF regimen induces oxidative stress resistance in C. elegans. Subsequently, this promotes longevity and slow aging in C. elegans by altering the insulin/ insulin-like growth factor signaling (IIS) pathway. The present study suggested the beneficial effects of time-restricted fasting in the eukaryotic model nematodes through the activation of lipid metabolism that involves enhanced production of OEA precursors which promotes lipolysis. In addition, the data revealed that the increased ATP production resulted in oxidative stress tolerance that promoted longevity and slow aging processes.

油基乙醇胺前体触发限时间歇性禁食期间的脂肪分解,促进秀丽隐杆线虫的长寿和健康衰老。
间歇性禁食(IF)、限时间歇性禁食(TRIF)和模拟禁食饮食在减肥计划中越来越受欢迎。身体有效地利用其能量储备来激活代谢过程,以响应食物摄入。调整饮食可以通过激活特定的代谢过程来改变/延长寿命并促进健康老龄化。然而,TRIF中一般脂质代谢的变化,特别是n -酰基乙醇酰胺(NAE)调节的改变及其在促进脂肪分解和延长寿命中的作用仍未得到充分的探讨。为了弥补这方面的知识差距,本研究的重点是提高油基乙醇胺(OEA),一种激发饱腹感、促进脂肪分解和延长模型系统秀丽隐杆线虫寿命的前体分子。秀丽隐杆线虫的TRIF方案诱导OEA,从而导致饱腹感,随后脂解和ATP合成。由于OEA前体的富集,脂肪组织甘油三酯脂肪酶-1 (ATGL-1)活性的增加刺激了脂肪分解。此外,TRIF方案可诱导秀丽隐杆线虫的氧化应激抗性。随后,这通过改变胰岛素/胰岛素样生长因子信号(IIS)途径促进秀丽隐杆线虫的长寿和延缓衰老。本研究表明,限时禁食对真核模型线虫的有益作用是通过激活脂质代谢,包括增强OEA前体的产生,从而促进脂质分解。此外,数据显示,增加的ATP产生导致氧化应激耐受性,促进长寿和延缓衰老过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of physiology and biochemistry
Journal of physiology and biochemistry 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信