Convergent Mechanisms in Virus-Induced Cancers: A Perspective on Classical Viruses, SARS-CoV-2, and AI-Driven Solutions.

IF 3.4 Q2 INFECTIOUS DISEASES
Thorsten Rudroff
{"title":"Convergent Mechanisms in Virus-Induced Cancers: A Perspective on Classical Viruses, SARS-CoV-2, and AI-Driven Solutions.","authors":"Thorsten Rudroff","doi":"10.3390/idr17020033","DOIUrl":null,"url":null,"abstract":"<p><p>This perspective examines the potential oncogenic mechanisms of SARS-CoV-2 through comparative analysis with established cancer-causing viruses, integrating classical virological approaches with artificial intelligence (AI)-driven analysis. The paper explores four key themes: shared oncogenic mechanisms between classical viruses and SARS-CoV-2 (including cell cycle dysregulation, inflammatory signaling, immune evasion, and metabolic reprogramming); the application of AI in understanding viral oncogenesis; the integration of neuroimaging evidence; and future research directions. The author presents novel hypotheses regarding SARS-CoV-2's potential oncogenic mechanisms, supported by recent PET/FDG imaging studies showing persistent metabolic alterations. The manuscript emphasizes the transformative potential of combining traditional virological methods with advanced AI technologies for better understanding and preventing virus-induced cancers, while highlighting the importance of long-term monitoring of COVID-19 survivors for potential oncogenic developments.</p>","PeriodicalId":13579,"journal":{"name":"Infectious Disease Reports","volume":"17 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027309/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/idr17020033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

This perspective examines the potential oncogenic mechanisms of SARS-CoV-2 through comparative analysis with established cancer-causing viruses, integrating classical virological approaches with artificial intelligence (AI)-driven analysis. The paper explores four key themes: shared oncogenic mechanisms between classical viruses and SARS-CoV-2 (including cell cycle dysregulation, inflammatory signaling, immune evasion, and metabolic reprogramming); the application of AI in understanding viral oncogenesis; the integration of neuroimaging evidence; and future research directions. The author presents novel hypotheses regarding SARS-CoV-2's potential oncogenic mechanisms, supported by recent PET/FDG imaging studies showing persistent metabolic alterations. The manuscript emphasizes the transformative potential of combining traditional virological methods with advanced AI technologies for better understanding and preventing virus-induced cancers, while highlighting the importance of long-term monitoring of COVID-19 survivors for potential oncogenic developments.

病毒诱导癌症的趋同机制:经典病毒、SARS-CoV-2和人工智能驱动解决方案的视角
该视角将经典病毒学方法与人工智能(AI)驱动的分析相结合,通过与已建立的致癌病毒的比较分析,探讨SARS-CoV-2的潜在致癌机制。本文探讨了四个关键主题:经典病毒与SARS-CoV-2之间的共同致癌机制(包括细胞周期失调、炎症信号、免疫逃避和代谢重编程);人工智能在了解病毒肿瘤发生中的应用;神经影像学证据的整合;以及未来的研究方向。作者提出了关于SARS-CoV-2潜在致癌机制的新假设,最近的PET/FDG成像研究显示持续的代谢改变。该手稿强调了将传统病毒学方法与先进的人工智能技术相结合的变革潜力,可以更好地了解和预防病毒诱导的癌症,同时强调了长期监测COVID-19幸存者以了解潜在致癌发展的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infectious Disease Reports
Infectious Disease Reports INFECTIOUS DISEASES-
CiteScore
5.10
自引率
0.00%
发文量
82
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信