Na Wang, Xingyue Lu, Panwei Gao, Peng Zhang, Yi Wang, Lin Miao, Han Zhang, Lijuan Chai
{"title":"Study on the Effect and Mechanism of Weichang'an Pill and Its Extract on Slow Transit Constipation.","authors":"Na Wang, Xingyue Lu, Panwei Gao, Peng Zhang, Yi Wang, Lin Miao, Han Zhang, Lijuan Chai","doi":"10.1111/nmo.70052","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Weichang'an pill (WCA) possesses potential advantages in promoting gastrointestinal motility and treating constipation. Ethanol extract (EE) and aqueous extract (AE) of WCA were used to investigate its efficacy in treating slow transit constipation (STC) and the material basis for exerting this effect.</p><p><strong>Methods: </strong>The STC model was established in vivo by gavage of loperamide (Lop) in Sprague-Dawley rats, followed by gavage of WCA, EE, and AE. In vitro, norepinephrine (NE) was used to stimulate isolated ileal smooth muscle of rats to imitate the state of insufficient gastrointestinal motility during STC, and a model of excessive relaxation of isolated ileal smooth muscle was established. This model was used to observe and record the changes in contraction tension, amplitude, and frequency of ileal smooth muscle after treatment with WCA, EE, AE, and the active ingredients of WCA.</p><p><strong>Key results: </strong>In vivo, WCA, EE, and AE treatment increased fecal parameters, improved gastrointestinal transit time, and alleviated pathological damage to the colon in STC rats. Its mechanism might be closely related to c-kit/SCF, RhoA/ROCK/MYPT1/MLC signaling pathways. In vitro, WCA, EE, AE, and the active ingredients of WCA, including costunolide (Cos), dehydrocostus lactone (Deh), agarotetrol (Aga), muscone (Mus), gallic acid (GA), oleic acid (Oleic), linoleic acid (Lin), umbelliferone (Umb), synephrine (Syn), ferulic acid (FA), chlorogenic acid (ChA), betaine (Bet), and riboflavin (Rib), significantly inhibited the NE-induced excessive relaxation of ileal smooth muscles.</p><p><strong>Conclusions: </strong>WCA, EE, and AE significantly improved constipation in STC rats. Moreover, the active ingredients in WCA, including Cos, Deh, Aga, Mus, GA, Oleic, Lin, Umb, Syn, FA, ChA, Bet, and Rib, might be the material basis for promoting intestinal motility.</p>","PeriodicalId":19123,"journal":{"name":"Neurogastroenterology and Motility","volume":" ","pages":"e70052"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogastroenterology and Motility","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nmo.70052","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Weichang'an pill (WCA) possesses potential advantages in promoting gastrointestinal motility and treating constipation. Ethanol extract (EE) and aqueous extract (AE) of WCA were used to investigate its efficacy in treating slow transit constipation (STC) and the material basis for exerting this effect.
Methods: The STC model was established in vivo by gavage of loperamide (Lop) in Sprague-Dawley rats, followed by gavage of WCA, EE, and AE. In vitro, norepinephrine (NE) was used to stimulate isolated ileal smooth muscle of rats to imitate the state of insufficient gastrointestinal motility during STC, and a model of excessive relaxation of isolated ileal smooth muscle was established. This model was used to observe and record the changes in contraction tension, amplitude, and frequency of ileal smooth muscle after treatment with WCA, EE, AE, and the active ingredients of WCA.
Key results: In vivo, WCA, EE, and AE treatment increased fecal parameters, improved gastrointestinal transit time, and alleviated pathological damage to the colon in STC rats. Its mechanism might be closely related to c-kit/SCF, RhoA/ROCK/MYPT1/MLC signaling pathways. In vitro, WCA, EE, AE, and the active ingredients of WCA, including costunolide (Cos), dehydrocostus lactone (Deh), agarotetrol (Aga), muscone (Mus), gallic acid (GA), oleic acid (Oleic), linoleic acid (Lin), umbelliferone (Umb), synephrine (Syn), ferulic acid (FA), chlorogenic acid (ChA), betaine (Bet), and riboflavin (Rib), significantly inhibited the NE-induced excessive relaxation of ileal smooth muscles.
Conclusions: WCA, EE, and AE significantly improved constipation in STC rats. Moreover, the active ingredients in WCA, including Cos, Deh, Aga, Mus, GA, Oleic, Lin, Umb, Syn, FA, ChA, Bet, and Rib, might be the material basis for promoting intestinal motility.
期刊介绍:
Neurogastroenterology & Motility (NMO) is the official Journal of the European Society of Neurogastroenterology & Motility (ESNM) and the American Neurogastroenterology and Motility Society (ANMS). It is edited by James Galligan, Albert Bredenoord, and Stephen Vanner. The editorial and peer review process is independent of the societies affiliated to the journal and publisher: Neither the ANMS, the ESNM or the Publisher have editorial decision-making power. Whenever these are relevant to the content being considered or published, the editors, journal management committee and editorial board declare their interests and affiliations.