Michelle Lee-Scott Beverly, Prem Prashant Chaudhary, Shareef Majid Dabdoub, Shinae Kim, Emmanouli Chatzakis, Kathryn Williamson, Sukirth Murthy Ganesan, Manoj Yadav, Grace Ratley, Brandon N D'Souza, Ian A Myles, Purnima S Kumar
{"title":"Toxic cultures: e-cigarettes and the oral microbial exposome.","authors":"Michelle Lee-Scott Beverly, Prem Prashant Chaudhary, Shareef Majid Dabdoub, Shinae Kim, Emmanouli Chatzakis, Kathryn Williamson, Sukirth Murthy Ganesan, Manoj Yadav, Grace Ratley, Brandon N D'Souza, Ian A Myles, Purnima S Kumar","doi":"10.1038/s41522-025-00709-7","DOIUrl":null,"url":null,"abstract":"<p><p>We tested the hypothesis that e-cigarette aerosol is metabolized by the indigenous oral microbiome, leading to structural and functional alterations. We combined untargeted metabolomics of in vitro commensal-rich and pathogen-rich biofilms with metatranscriptomics and fluorescent microscopy and verified the results in human samples. Spectral deconvolution of 4215 peaks identified 969 exposomal and endogenous metabolites that mapped to 23 metabolic pathways. The metabolites clustered by both aerosol characteristics and biofilm composition; and several were verified in human saliva of vapers. E-cigarette exposure upregulated xenobiotic degradation, capsule, peptidoglycan biosynthesis, organic carbon-compound metabolism, antimicrobial resistance, and secretion systems. E-cigarette exposure also altered biofilm architecture characterized by low surface-area to biovolume ratio, high biomass, and diffusion distance. In conclusion, our data suggest that bacterial metabolism of e-cigarette aerosol triggers a quorum-sensing-regulated stress response which mediates the formation of dense, exopolysaccharide-rich biofilms in health-compatible communities and antibiotic resistance and virulence amplification in disease-associated communities.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"66"},"PeriodicalIF":7.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00709-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We tested the hypothesis that e-cigarette aerosol is metabolized by the indigenous oral microbiome, leading to structural and functional alterations. We combined untargeted metabolomics of in vitro commensal-rich and pathogen-rich biofilms with metatranscriptomics and fluorescent microscopy and verified the results in human samples. Spectral deconvolution of 4215 peaks identified 969 exposomal and endogenous metabolites that mapped to 23 metabolic pathways. The metabolites clustered by both aerosol characteristics and biofilm composition; and several were verified in human saliva of vapers. E-cigarette exposure upregulated xenobiotic degradation, capsule, peptidoglycan biosynthesis, organic carbon-compound metabolism, antimicrobial resistance, and secretion systems. E-cigarette exposure also altered biofilm architecture characterized by low surface-area to biovolume ratio, high biomass, and diffusion distance. In conclusion, our data suggest that bacterial metabolism of e-cigarette aerosol triggers a quorum-sensing-regulated stress response which mediates the formation of dense, exopolysaccharide-rich biofilms in health-compatible communities and antibiotic resistance and virulence amplification in disease-associated communities.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.