Characterization of a uridine diphosphate (UDP)-glycosyltransferase gene associated with abamectin resistance in two-spotted spider mite, Tetranychus urticae.
{"title":"Characterization of a uridine diphosphate (UDP)-glycosyltransferase gene associated with abamectin resistance in two-spotted spider mite, Tetranychus urticae.","authors":"Guifeng Hao, Qing Chen, Ying Liu, Chunling Wu, Xingkui An, Ijiti Oluwole Gregory, Xiao Liang","doi":"10.1007/s10493-025-01020-y","DOIUrl":null,"url":null,"abstract":"<p><p>Uridine diphosphate (UDP)-glycosyltransferase (UGT) belongs to detoxification enzyme glycosylating lipophilic xenobiotic compounds in various living organisms. Tetranychus urticae is a notorious pest due to its significant threat to crop production and serious resistance problem worldwide. However, the function of UGT gene in contributing to pesticide resistance in T. urticae remained largely unknown. In this study, it was found that the laboratory selected abamectin-resistant (AbR) strain had developed over 20,000-fold resistance compared with the susceptible strain (SS). After being treated with abamectin, the activities of UGTs, and the transcription of TuUGT201D3 in the AbR strain were significantly higher than those in SS. Molecular docking indicated that the UGT201D3 protein exhibited high binding capacity with abamectin, suggesting the potential interaction between them. Furthermore, knock-down the transcription of TuUGT201D3 led to the decrease of activities of UGTs, in addition, the mortalities of AbR strain (58.4%) will significantly increase compared to control (41.1%) under 48 h of abamectin treatment. Those findings elucidated that TuUGT201D3 was correlated with abamectin resistance in T. urticae.</p>","PeriodicalId":12088,"journal":{"name":"Experimental and Applied Acarology","volume":"94 4","pages":"53"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Applied Acarology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10493-025-01020-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Uridine diphosphate (UDP)-glycosyltransferase (UGT) belongs to detoxification enzyme glycosylating lipophilic xenobiotic compounds in various living organisms. Tetranychus urticae is a notorious pest due to its significant threat to crop production and serious resistance problem worldwide. However, the function of UGT gene in contributing to pesticide resistance in T. urticae remained largely unknown. In this study, it was found that the laboratory selected abamectin-resistant (AbR) strain had developed over 20,000-fold resistance compared with the susceptible strain (SS). After being treated with abamectin, the activities of UGTs, and the transcription of TuUGT201D3 in the AbR strain were significantly higher than those in SS. Molecular docking indicated that the UGT201D3 protein exhibited high binding capacity with abamectin, suggesting the potential interaction between them. Furthermore, knock-down the transcription of TuUGT201D3 led to the decrease of activities of UGTs, in addition, the mortalities of AbR strain (58.4%) will significantly increase compared to control (41.1%) under 48 h of abamectin treatment. Those findings elucidated that TuUGT201D3 was correlated with abamectin resistance in T. urticae.
期刊介绍:
Experimental and Applied Acarology publishes peer-reviewed original papers describing advances in basic and applied research on mites and ticks. Coverage encompasses all Acari, including those of environmental, agricultural, medical and veterinary importance, and all the ways in which they interact with other organisms (plants, arthropods and other animals). The subject matter draws upon a wide variety of disciplines, including evolutionary biology, ecology, epidemiology, physiology, biochemistry, toxicology, immunology, genetics, molecular biology and pest management sciences.