Prediction of brain metastasis progression after stereotactic radiosurgery: sensitivity to changing the definition of progression.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-03-01 Epub Date: 2025-04-08 DOI:10.1117/1.JMI.12.2.024504
Robert Policelli, David DeVries, Joanna Laba, Andrew Leung, Terence Tang, Ali Albweady, Ghada Alqaidy, Aaron D Ward
{"title":"Prediction of brain metastasis progression after stereotactic radiosurgery: sensitivity to changing the definition of progression.","authors":"Robert Policelli, David DeVries, Joanna Laba, Andrew Leung, Terence Tang, Ali Albweady, Ghada Alqaidy, Aaron D Ward","doi":"10.1117/1.JMI.12.2.024504","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Machine learning (ML) has been used to predict tumor progression post-stereotactic radiosurgery (SRS) based on pre-treatment MRI for brain metastasis (BM) patients, but there is variability in the definition of what constitutes progression. We aim to measure the magnitude of the change of performance of an ML model predicting post-SRS progression when various definitions of progression were used.</p><p><strong>Approach: </strong>We collected pre- and post-SRS contrast-enhanced T1-weighted MRI scans from 62 BM patients ( <math><mrow><mi>n</mi> <mo>=</mo> <mn>115</mn></mrow> </math> BMs). We trained a random decision forest model using radiomic features extracted from pre-SRS scans to predict progression versus non-progression for each BM. We varied the definition of progression by changing (1) the follow-up period ( <math><mrow><mo><</mo> <mn>9</mn></mrow> </math> , <math><mrow><mo><</mo> <mn>12</mn></mrow> </math> , <math><mrow><mo><</mo> <mn>15</mn></mrow> </math> , <math><mrow><mo><</mo> <mn>18</mn></mrow> </math> , or <math><mrow><mo><</mo> <mn>24</mn></mrow> </math> months); (2) the size change metric denoting progression ( <math><mrow><mo>≥</mo> <mn>10</mn> <mo>%</mo></mrow> </math> , <math><mrow><mo>≥</mo> <mn>15</mn> <mo>%</mo></mrow> </math> , <math><mrow><mo>≥</mo> <mn>20</mn> <mo>%</mo></mrow> </math> , or <math><mrow><mo>≥</mo> <mn>25</mn> <mo>%</mo></mrow> </math> in volume) or response assessment in neuro-oncology BM diameter ( <math><mrow><mo>≥</mo> <mn>20</mn> <mo>%</mo></mrow> </math> ); and (3) whether BMs with treatment-related size changes (TRSCs) (pseudo-progression and/or radiation-necrosis) were labeled as progression. We measured performance using the area under the receiver operating characteristic curve (AUC).</p><p><strong>Results: </strong>When we varied the follow-up period, size change metric, and TRSC labeling, the AUCs had ranges of 0.06 (0.69 to 0.75), 0.06 (0.69 to 0.75), and 0.08 (0.69 to 0.77), respectively. Radiomic feature importance remained similar.</p><p><strong>Conclusions: </strong>Variability in the definition of BM progression has a measurable impact on the performance of an MRI radiomic-based ML model predicting post-SRS progression. A consistent, clinically relevant definition of post-SRS progression across studies would enable robust comparison of proposed ML systems, thereby accelerating progress in this field.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 2","pages":"024504"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.2.024504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Machine learning (ML) has been used to predict tumor progression post-stereotactic radiosurgery (SRS) based on pre-treatment MRI for brain metastasis (BM) patients, but there is variability in the definition of what constitutes progression. We aim to measure the magnitude of the change of performance of an ML model predicting post-SRS progression when various definitions of progression were used.

Approach: We collected pre- and post-SRS contrast-enhanced T1-weighted MRI scans from 62 BM patients ( n = 115 BMs). We trained a random decision forest model using radiomic features extracted from pre-SRS scans to predict progression versus non-progression for each BM. We varied the definition of progression by changing (1) the follow-up period ( < 9 , < 12 , < 15 , < 18 , or < 24 months); (2) the size change metric denoting progression ( 10 % , 15 % , 20 % , or 25 % in volume) or response assessment in neuro-oncology BM diameter ( 20 % ); and (3) whether BMs with treatment-related size changes (TRSCs) (pseudo-progression and/or radiation-necrosis) were labeled as progression. We measured performance using the area under the receiver operating characteristic curve (AUC).

Results: When we varied the follow-up period, size change metric, and TRSC labeling, the AUCs had ranges of 0.06 (0.69 to 0.75), 0.06 (0.69 to 0.75), and 0.08 (0.69 to 0.77), respectively. Radiomic feature importance remained similar.

Conclusions: Variability in the definition of BM progression has a measurable impact on the performance of an MRI radiomic-based ML model predicting post-SRS progression. A consistent, clinically relevant definition of post-SRS progression across studies would enable robust comparison of proposed ML systems, thereby accelerating progress in this field.

立体定向放射手术后脑转移进展的预测:对改变进展定义的敏感性。
目的:机器学习(ML)已被用于基于脑转移(BM)患者的治疗前MRI预测立体定向放射手术(SRS)后的肿瘤进展,但在构成进展的定义上存在差异。我们的目标是在使用不同的进展定义时,测量预测srs后进展的ML模型的性能变化幅度。方法:我们收集了62例脑卒中患者(n = 115例脑卒中)的srs前后对比增强t1加权MRI扫描。我们使用从预srs扫描中提取的放射学特征训练了一个随机决策森林模型,以预测每个BM的进展与非进展。我们通过改变(1)随访时间(9、12、15、18或24个月)来改变进展的定义;(2)表示进展的大小变化指标(体积≥10%,≥15%,≥20%或≥25%)或神经肿瘤学BM直径的反应评估(≥20%);(3)伴有治疗相关大小改变(TRSCs)的脑转移瘤(假性进展和/或放射性坏死)是否被标记为进展。我们使用接收器工作特性曲线(AUC)下的面积来测量性能。结果:当我们改变随访时间、尺寸变化度量和TRSC标记时,auc的范围分别为0.06(0.69 ~ 0.75)、0.06(0.69 ~ 0.75)和0.08(0.69 ~ 0.77)。放射学特征的重要性保持相似。结论:BM进展定义的可变性对基于MRI放射学的ML模型预测srs后进展的性能具有可测量的影响。在所有研究中对srs后进展的一致的、临床相关的定义将使所提出的ML系统进行稳健的比较,从而加速该领域的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信